24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A vector radiative transfer model us<strong>in</strong>g <strong>the</strong> perturbation <strong>the</strong>ory approach 77<br />

with coefficients<br />

Λ m k =<br />

N∑<br />

i,j=−N<br />

j≠0<br />

Υ m k = 1<br />

2π<br />

Γ m k = 1<br />

2π<br />

N∑<br />

i=−N<br />

i≠0<br />

a i a j 〈Ψ +mT<br />

d<br />

(−µ i ,λ v )〉 k ∆Z m k (µ j ,µ i ) 〈I +m<br />

d<br />

(µ j ,λ)〉 k<br />

1 ∑ N<br />

µ v<br />

a i 〈Ψ +mT<br />

d<br />

(−µ i ,λ v )〉 k ∆Z m k (−µ 0 ,µ i ) F 0<br />

i=−N<br />

i≠0<br />

a i e T i Z m k (µ i ,µ v ) 〈I +m<br />

d<br />

(µ i ,λ)〉 k<br />

Θ m k = 1<br />

4π 2 1<br />

µ v<br />

e T i Z m k (−µ 0 ,µ v ) F 0 . (3.99)<br />

Here z k−1 and z k <strong>in</strong>dicate <strong>the</strong> lower and upper layer boundary, respectively, β scat,k represents <strong>the</strong><br />

<strong>scatter<strong>in</strong>g</strong> coefficient, and Z m k is <strong>the</strong> Fourier component of <strong>the</strong> <strong>scatter<strong>in</strong>g</strong> phase matrix <strong>in</strong> layer k.<br />

Quantities of <strong>the</strong> form 〈f〉 k denotes a layer average def<strong>in</strong>ed by<br />

〈f〉 k = 1 2 [f(z k−1) + f(z k )] , (3.100)<br />

where f is a function of altitude z. The rema<strong>in</strong>der of <strong>the</strong> <strong>in</strong>tegrals <strong>in</strong> Eq. (3.98) can be calculated <strong>in</strong> a<br />

straightforward manner, which gives<br />

[<br />

M∑<br />

K m (λ,λ v ) ≈ β scat,k (λ,λ v ) Λ m k + Υ m µ 0<br />

k<br />

β ext,k (λ) [1 − e∆τ k(λ)/µ 0<br />

] e −τ k−1(λ)/µ 0<br />

k=1<br />

+Γ m k<br />

+Θ m k<br />

1<br />

β ext,k (λ v ) [1 − e∆τ k(λ v)/µ v<br />

] e −τ k−1(λ v)/µ v<br />

µ 0 e −τ k−1(λ v)/µ v<br />

e −τ k−1(λ)/µ 0<br />

β ext,k (λ v )µ 0 + β ext,k (λ)µ v<br />

[1 − e ∆τ k(λ v)/µ v<br />

e ∆τ k(λ)/µ 0<br />

]<br />

]<br />

. (3.101)<br />

An analogous approach holds for <strong>the</strong> coefficients (3.54), which allows one to evaluate <strong>the</strong> perturbation<br />

<strong>in</strong>tegral <strong>in</strong> Eq. (3.46).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!