24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

34 Chapter 2<br />

f. Differences occur at wavelengths where fill<strong>in</strong>g-<strong>in</strong> of solar Fraunhofer l<strong>in</strong>es and/or atmospheric<br />

absorption l<strong>in</strong>es takes place (see Fig. 2.4). For example at <strong>the</strong> Ca II K and H l<strong>in</strong>e, approach A leads<br />

to an underestimation of <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong>, whereas approach B leads to an overestimation of <strong>the</strong> fill<strong>in</strong>g of<br />

<strong>the</strong>se Fraunhofer l<strong>in</strong>es. The latter seems surpris<strong>in</strong>g at first: on might expect that a model like PTB,<br />

which does not take all <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> processes <strong>in</strong>to account, would show a weaker fill<strong>in</strong>g-<strong>in</strong> than<br />

DA. In o<strong>the</strong>r words, <strong>the</strong> more <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> is allowed, <strong>the</strong> more fill<strong>in</strong>g-<strong>in</strong> is expected. This is not<br />

<strong>the</strong> case and <strong>the</strong> explanation of <strong>the</strong> overestimation can be found <strong>in</strong> <strong>the</strong> way how perturbation <strong>the</strong>ory<br />

works. Due to <strong>the</strong> fact that <strong>the</strong> perturbation <strong>the</strong>ory approach does not account for changes <strong>in</strong> light<br />

propagation succeed<strong>in</strong>g <strong>the</strong> perturbation, an overestimation or an underestimation is possible depend<strong>in</strong>g<br />

on <strong>the</strong> specific application. This effect has to be considered <strong>in</strong> addition to <strong>the</strong> underestimation of<br />

<strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> due to <strong>the</strong> neglect of multiple <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>.<br />

To expla<strong>in</strong> this <strong>in</strong> more detail, Fig. 2.6 shows <strong>the</strong> difference of <strong>the</strong> reflectivity due to <strong>in</strong>elastic<br />

<strong>scatter<strong>in</strong>g</strong> for <strong>in</strong>com<strong>in</strong>g sunlight at one particular wavelength, i.e. λ = 395 nm, as it is simulated with<br />

<strong>the</strong> different models. The PTA model underestimates <strong>the</strong> reflectivity at any wavelength of <strong>the</strong> outgo<strong>in</strong>g<br />

light. The propagation effect <strong>in</strong> this model is of m<strong>in</strong>or importance and <strong>the</strong> neglect of multiple <strong>in</strong>elastic<br />

<strong>scatter<strong>in</strong>g</strong> processes dom<strong>in</strong>ates <strong>the</strong> simulation. Overall, this results <strong>in</strong> an underestimation of <strong>the</strong> fill<strong>in</strong>g<strong>in</strong>.<br />

The situation is different for PTB, which shows three different groups of l<strong>in</strong>es. The elastic l<strong>in</strong>e<br />

is clearly underestimated. Here, <strong>the</strong> perturbation ∆L means to replace a Rayleigh <strong>scatter<strong>in</strong>g</strong> event<br />

by a Cabannes <strong>scatter<strong>in</strong>g</strong> event. The <strong>in</strong>elastic l<strong>in</strong>es are caused by a perturbation ∆L, which adds a<br />

<strong>Raman</strong> process to <strong>the</strong> Rayleigh <strong>scatter<strong>in</strong>g</strong> solution. This causes an overestimation of <strong>Raman</strong> l<strong>in</strong>es<br />

because too much light is built up <strong>in</strong> <strong>the</strong> <strong>in</strong>elastic l<strong>in</strong>es due to multiple Rayleigh <strong>scatter<strong>in</strong>g</strong> before<br />

and after <strong>the</strong> perturbation. However, also multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> leads to more light arriv<strong>in</strong>g at<br />

<strong>the</strong> <strong>Raman</strong> l<strong>in</strong>es. Due to both effects PTB overestimates <strong>the</strong> l<strong>in</strong>es close to <strong>the</strong> elastic component and<br />

underestimates <strong>the</strong> weaker outer l<strong>in</strong>es. Overall, <strong>the</strong> differences add up to zero, which has to be <strong>the</strong><br />

case for a perturbation of this type. This is consistent with gett<strong>in</strong>g <strong>the</strong> correct cont<strong>in</strong>uum height of <strong>the</strong><br />

radiance. Apply<strong>in</strong>g a solar spectrum to <strong>the</strong> reflectivity gives <strong>the</strong> backscattered <strong>in</strong>tensity of <strong>the</strong> model<br />

<strong>atmosphere</strong>, which demonstrates that PTB generates a too strong fill<strong>in</strong>g-<strong>in</strong> of <strong>the</strong> Ca II K and H l<strong>in</strong>e<br />

compared to DA. For <strong>the</strong> same reason we get an exaggeration of <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> amplitudes <strong>in</strong> <strong>the</strong> range<br />

300-330 nm.<br />

In conclusion, approach B is successful <strong>in</strong> compensat<strong>in</strong>g for neglect<strong>in</strong>g multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong><br />

when it comes to reach<strong>in</strong>g <strong>the</strong> correct cont<strong>in</strong>uum radiance. However, at wavelengths where<br />

fill<strong>in</strong>g-<strong>in</strong> occurs, <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> amplitudes are noticeably exaggerated. Fig. 2.5 shows that <strong>the</strong> fill<strong>in</strong>g<strong>in</strong><br />

amplitudes <strong>in</strong> a fill<strong>in</strong>g-<strong>in</strong> spectrum are overestimated with approximately 0.2% <strong>in</strong> <strong>the</strong> range 320–<br />

330 nm, and with about 0.6% at <strong>the</strong> Ca II H and K l<strong>in</strong>es. These differences with respect to <strong>the</strong><br />

cont<strong>in</strong>uum seem slightly larger than when approach A is used, which produces differences of about<br />

0.1% <strong>in</strong> <strong>the</strong> range 320–330 nm and about -0.5% at <strong>the</strong> Ca II H and K l<strong>in</strong>es.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!