24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A doubl<strong>in</strong>g-add<strong>in</strong>g method to <strong>in</strong>clude multiple orders of rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> 29<br />

2.4 Simulation of multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> Earth’s <strong>atmosphere</strong><br />

To study <strong>the</strong> effect of multiple orders of <strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> Earth’s <strong>atmosphere</strong>, we<br />

used a model <strong>atmosphere</strong> consist<strong>in</strong>g of two homogeneous layers which represent <strong>the</strong> troposphere and<br />

<strong>the</strong> stratosphere. The composition of <strong>the</strong> two layers is summarized <strong>in</strong> Table 2.1 and <strong>the</strong>ir optical<br />

properties are given <strong>in</strong> Fig. 2.3. In <strong>the</strong> ultraviolet and shortwave visible, <strong>the</strong> <strong>scatter<strong>in</strong>g</strong> properties of<br />

<strong>the</strong> layers are ma<strong>in</strong>ly determ<strong>in</strong>ed by <strong>the</strong> well-mixed gases N 2 , O 2 and Ar, whereas ozone is <strong>the</strong> most<br />

relevant atmospheric absorber <strong>in</strong> this part of <strong>the</strong> spectrum. Aerosols, NO 2 and o<strong>the</strong>r trace gases were<br />

ignored and <strong>the</strong> surface was considered to be black.<br />

Three wavelength regions were selected to study <strong>the</strong> R<strong>in</strong>g features <strong>in</strong> fur<strong>the</strong>r detail. First, <strong>the</strong><br />

region 280–290 nm was chosen, where ozone absorption dom<strong>in</strong>ates and <strong>the</strong> s<strong>in</strong>gle <strong>scatter<strong>in</strong>g</strong> approximation<br />

suffices. Second, <strong>the</strong> region 320-330 nm was evaluated, where ozone absorption and <strong>scatter<strong>in</strong>g</strong><br />

have a comparable magnitude. Besides fill<strong>in</strong>g-<strong>in</strong> of solar spectral features, fill<strong>in</strong>g-<strong>in</strong> of <strong>the</strong> Hugg<strong>in</strong>s<br />

ozone absorption structures occurs as well <strong>in</strong> this range. And last, <strong>the</strong> radiance for 390-400 nm was<br />

selected, where <strong>scatter<strong>in</strong>g</strong> is less strong than <strong>in</strong> <strong>the</strong> range 320-330 nm and where <strong>scatter<strong>in</strong>g</strong> is conservative.<br />

The simulated radiance spectra were convolved with a Gaussian <strong>in</strong>strument function with a<br />

full width at half maximum (FWHM) of 0.2 nm to represent GOME-type measurements. The effect of<br />

multiple orders of <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong> three spectral w<strong>in</strong>dows can be studied by compar<strong>in</strong>g fill<strong>in</strong>g<strong>in</strong><br />

spectra simulated with <strong>the</strong> DA model and with <strong>the</strong> DA1 model, respectively (see Section 2.3.1).<br />

The result is shown <strong>in</strong> <strong>the</strong> lower panels of Fig. 2.4.<br />

At <strong>the</strong> shorter wavelengths, from 280 to 290 nm, <strong>the</strong> fill<strong>in</strong>g-<strong>in</strong> spectra f DA1 and f DA agree very<br />

well, because both multiple elastic and multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> are of m<strong>in</strong>or importance <strong>in</strong> this<br />

spectral range. In <strong>the</strong> second spectral range 320–325 nm, where <strong>the</strong> multiple <strong>scatter<strong>in</strong>g</strong> contribution<br />

makes up more than half of <strong>the</strong> total signal, we observe an offset <strong>in</strong> <strong>the</strong> difference f DA1 − f DA of<br />

about 0.5 %. This is expla<strong>in</strong>ed by <strong>the</strong> fact that <strong>the</strong> DA1 approach ignores photons which are multiply<br />

<strong>Raman</strong> scattered. On top of this, we see that multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> causes structures of about<br />

±0.1 % which are partly related to extra fill<strong>in</strong>g-<strong>in</strong> of <strong>the</strong> Hugg<strong>in</strong>s ozone absorption bands and partly<br />

to <strong>the</strong> extra fill<strong>in</strong>g-<strong>in</strong> of moderate solar Fraunhofer l<strong>in</strong>es. For example at <strong>the</strong> location of a prom<strong>in</strong>ent<br />

Hugg<strong>in</strong>s absorption band feature at 325.00 nm, about 0.6% of <strong>the</strong> total fill<strong>in</strong>g-<strong>in</strong> can be attributed to<br />

multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong>. In <strong>the</strong> range 390-400 nm, two prom<strong>in</strong>ent R<strong>in</strong>g features appear at <strong>the</strong><br />

Ca II K and H l<strong>in</strong>e <strong>in</strong> <strong>the</strong> solar spectrum. The multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> contribution <strong>in</strong> <strong>the</strong> Ca II<br />

K and H l<strong>in</strong>e is about 0.7% at a spectral resolution of 0.2 nm. Aga<strong>in</strong>, a cont<strong>in</strong>uum offset of 0.2%<br />

is observed, which is smaller than <strong>in</strong> <strong>the</strong> 320–325 nm range due to less strong multiple <strong>scatter<strong>in</strong>g</strong>.<br />

Due to pronounced Fraunhofer l<strong>in</strong>es, <strong>the</strong> contribution of multiple <strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> to <strong>the</strong><br />

fill<strong>in</strong>g-<strong>in</strong> structures, i.e. 0.5%, is stronger than <strong>the</strong> contribution to <strong>the</strong> cont<strong>in</strong>uum.<br />

In conclusion, <strong>the</strong> contribution of multiple <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong> has to be taken <strong>in</strong>to consideration<br />

<strong>in</strong> <strong>the</strong> spectral ranges 320-330 nm and 390-400 nm where multiple <strong>scatter<strong>in</strong>g</strong> is important. Although<br />

<strong>the</strong> multiple <strong>scatter<strong>in</strong>g</strong> contribution reaches its maximum around 320-330 nm, <strong>the</strong> lack of prom<strong>in</strong>ent<br />

Fraunhofer l<strong>in</strong>es <strong>in</strong> this spectral w<strong>in</strong>dow prevents a strong impact to be seen <strong>in</strong> a fill<strong>in</strong>g-<strong>in</strong> spectrum.<br />

In <strong>the</strong> range 390-400 nm on <strong>the</strong> o<strong>the</strong>r hand, where <strong>the</strong> contribution of multiple <strong>scatter<strong>in</strong>g</strong> is smaller,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!