24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A vector radiative transfer model us<strong>in</strong>g <strong>the</strong> perturbation <strong>the</strong>ory approach 45<br />

Here, <strong>the</strong> <strong>in</strong>ner product is def<strong>in</strong>ed by <strong>the</strong> phase space <strong>in</strong>tegration<br />

∫ ∞ ∫ ztop<br />

∫<br />

〈I 1 , I 2 〉 = dλ dz dΩ I T 1 (z,Ω,λ)I 2 (z,Ω,λ) (3.14)<br />

0<br />

0<br />

4π<br />

for two arbitrary vector functions I 1 and I 2 .<br />

For retrieval purposes of atmospheric constituents from space borne measurements one is typically<br />

<strong>in</strong>terested <strong>in</strong> a radiative effect E given by one of <strong>the</strong> four Stokes parameters (or a l<strong>in</strong>ear comb<strong>in</strong>ation<br />

of those) at a wavelength λ v , at <strong>the</strong> top of <strong>the</strong> model <strong>atmosphere</strong> po<strong>in</strong>ted toward <strong>the</strong> view<strong>in</strong>g direction<br />

of an <strong>in</strong>strument. In this particular case <strong>the</strong> response function for <strong>the</strong> i-th Stokes parameter is given<br />

by<br />

R i (z,Ω,λ) = δ(z−z top )δ(Ω−Ω v )δ(λ−λ v )e i , (3.15)<br />

where e i is <strong>the</strong> unity vector <strong>in</strong> <strong>the</strong> direction of <strong>the</strong> i-th component of <strong>the</strong> <strong>in</strong>tensity vector, and Ω v =<br />

(µ v ,ϕ v ) denotes <strong>the</strong> view<strong>in</strong>g direction of <strong>the</strong> <strong>in</strong>strument.<br />

3.2.2 Decomposition of <strong>the</strong> radiative transfer problem<br />

The spectral coupl<strong>in</strong>g of <strong>the</strong> <strong>in</strong>tensity vector field due to <strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> renders any solution<br />

approach of <strong>the</strong> <strong>in</strong>tegro-differential equation (3.2) difficult. However, <strong>in</strong> <strong>the</strong> case of rotational<br />

<strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> <strong>the</strong> coupl<strong>in</strong>g is weak. One solution technique is to solve first <strong>the</strong> radiative transfer<br />

equation, which takes only elastic <strong>scatter<strong>in</strong>g</strong> processes <strong>in</strong>to account and to treat <strong>the</strong> wavelength coupl<strong>in</strong>g<br />

due to <strong>in</strong>elastic <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> as a perturbation effect. In o<strong>the</strong>r words, we decompose <strong>the</strong><br />

transport operator ˆL <strong>in</strong> two parts,<br />

ˆL = ˆL o + ∆ˆL. (3.16)<br />

Here ˆL o describes a monochromatic radiative transfer problem<br />

ˆL o I o = S, (3.17)<br />

which can be solved with standard techniques (see e.g. Lenoble [1993]), and ∆ˆL represents a correspond<strong>in</strong>g<br />

perturbation <strong>in</strong> transport given by <strong>in</strong>elastic <strong>scatter<strong>in</strong>g</strong>.<br />

For example, we can choose a radiative transfer operator ˆL o , which describes monochromatic<br />

radiative transfer <strong>in</strong>clud<strong>in</strong>g pure Rayleigh <strong>scatter<strong>in</strong>g</strong>. So ˆL o is def<strong>in</strong>ed by Eq. (3.3) but with a <strong>scatter<strong>in</strong>g</strong><br />

source<br />

J o (z, ˜Ω, ˜λ|z,Ω,λ) = δ(λ−˜λ) βray scat(z, ˜λ) Z ray (˜λ,<br />

4π<br />

˜Ω,Ω). (3.18)<br />

Here, β ray<br />

scat is <strong>the</strong> total Rayleigh <strong>scatter<strong>in</strong>g</strong> coefficient for an ensemble of N 2 , O 2 , and Ar molecules,<br />

which is def<strong>in</strong>ed analogous to Eq. (3.9), and Z ray represents <strong>the</strong> correspond<strong>in</strong>g effective <strong>scatter<strong>in</strong>g</strong><br />

phase matrix.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!