24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A vector radiative transfer model us<strong>in</strong>g <strong>the</strong> perturbation <strong>the</strong>ory approach 47<br />

G<br />

G<br />

G<br />

o<br />

= − + − ...<br />

G<br />

o<br />

o<br />

∆ L<br />

G<br />

o<br />

∆ L<br />

G<br />

G<br />

o<br />

o<br />

∆ L<br />

Rayleigh<br />

Rayleigh +<br />

1. order <strong>Raman</strong> correction<br />

Rayleigh +<br />

2. order <strong>Raman</strong> correction<br />

Figure 3.1: Illustration of <strong>the</strong> perturbation series <strong>in</strong> Eq. (3.28). The Green’s operator Ĝ may be approximated<br />

by <strong>the</strong> unperturbed Green’s operator Ĝo plus higher order corrections. Here, each correction term<br />

consists of a cha<strong>in</strong> of elements built up from <strong>the</strong> unperturbed Green’s operator Ĝo, which describes <strong>the</strong><br />

propagation of light to <strong>the</strong> po<strong>in</strong>t of perturbation, and <strong>the</strong> perturbation of transport itself, represented by<br />

<strong>the</strong> operator ∆ˆL.<br />

for any radiation source S and any response function R. The operator Ĝ can be given <strong>in</strong> <strong>the</strong> form of<br />

an <strong>in</strong>tegral, viz.<br />

∫ ∫ ztop<br />

∫ ∞<br />

Ĝ = dΩ ′ dz ′ dλ ′ G(z,Ω,λ|z ′ ,Ω ′ ,λ ′ ) ◦ (3.24)<br />

4π<br />

0<br />

0<br />

where <strong>the</strong> kernel G is a function with a 4 × 4 matrix structure. Because of Eq. (3.21) <strong>the</strong> kernel G<br />

has to obey <strong>the</strong> relation<br />

ˆLG(z,Ω,λ|z ′ ,Ω ′ ,λ ′ ) = δ(z−z ′ )δ(Ω−Ω ′ )δ(λ−λ ′ )1. (3.25)<br />

This equation can be written also as<br />

ˆLg i (z,Ω,λ|z ′ ,Ω ′ ,λ ′ ) = δ(z−z ′ )δ(Ω−Ω ′ )δ(λ−λ ′ )e i , (3.26)<br />

where g i is <strong>the</strong> i-th column vector of G. Here, g i represents <strong>the</strong> <strong>in</strong>tensity vector field at <strong>the</strong> target<br />

po<strong>in</strong>t (z, Ω,λ) for a given unity light source <strong>in</strong> <strong>the</strong> i-th Stokes parameter at <strong>the</strong> source po<strong>in</strong>t (z ′ , Ω ′ ,λ ′ ).<br />

The matrix G is commonly called <strong>the</strong> Green’s function of <strong>the</strong> correspond<strong>in</strong>g differential equation and<br />

accord<strong>in</strong>gly we call <strong>the</strong> <strong>in</strong>verse operator Ĝ= ˆL −1 <strong>the</strong> Green’s operator.<br />

If <strong>the</strong> calculation of <strong>the</strong> Green’s function <strong>in</strong>tends to solve <strong>the</strong> actual problem for a particular source<br />

S, this formulation does not provide any simplification. However, <strong>the</strong> concept is needed for <strong>the</strong> perturbation<br />

<strong>the</strong>ory approach. Suppose that a simplified problem, which <strong>in</strong> our case is <strong>the</strong> monochromatic<br />

radiative transfer problem <strong>in</strong> Eq. (3.17), is already solved with a correspond<strong>in</strong>g Green’s operator Ĝo.<br />

Then <strong>the</strong> operator Ĝ and ˆL, which belong to <strong>the</strong> radiative transfer problem <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>elastic <strong>Raman</strong><br />

<strong>scatter<strong>in</strong>g</strong>, satisfy <strong>the</strong> relation<br />

Ĝ = Ĝo − Ĝ ∆ˆLĜo. (3.27)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!