24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

36 Chapter 2<br />

2.A Appendix: Optical properties of Rayleigh, Cabannes and <strong>Raman</strong><br />

<strong>scatter<strong>in</strong>g</strong><br />

The strength of Rayleigh <strong>scatter<strong>in</strong>g</strong> is described by <strong>the</strong> <strong>scatter<strong>in</strong>g</strong> cross section [Bucholtz, 1995, Naus<br />

and Ubachs, 2000]<br />

σ ray,air (ν ′ ) =<br />

∑<br />

χ i σ ray,i (ν ′ ), (2.24)<br />

i=N 2 ,O 2 ,Ar<br />

where ν ′ is <strong>the</strong> wavenumber of <strong>the</strong> <strong>in</strong>com<strong>in</strong>g radiation, i <strong>in</strong>dicates <strong>the</strong> molecule species, χ i is <strong>the</strong><br />

volume mix<strong>in</strong>g ratio (see Table 2.1), and<br />

[<br />

σ ray,i (ν ′ ) = 128π5 [ν ′ ] 4 α 2<br />

3<br />

i(ν ′ ) 1 + 2 ]<br />

9 ε i(ν ′ ) . (2.25)<br />

Here, α i is <strong>the</strong> average polarizability and ε i is <strong>the</strong> anisotropic polarizability factor. Values for <strong>the</strong>se<br />

quantities can be derived from Bates [1984] and Peck and Fisher [1964]. The term conta<strong>in</strong><strong>in</strong>g 2ε 9 i(ν)<br />

is attributed to <strong>the</strong> anisotropic polarizability of molecules [Long, 1977, Young, 1982]. Noble gases<br />

such as Ar show no anisotropy, hence ε Ar = 0.<br />

Rayleigh <strong>scatter<strong>in</strong>g</strong> is only an effective description of <strong>scatter<strong>in</strong>g</strong> by molecules. In reality, <strong>the</strong><br />

anisotropic part is distributed to o<strong>the</strong>r wavenumbers than <strong>the</strong> one for <strong>the</strong> <strong>in</strong>com<strong>in</strong>g light, due to rotation<br />

and vibration of molecules. In this paper we assume that N 2 and O 2 are simple l<strong>in</strong>ear rotors [Sioris,<br />

2001]. For pure rotational <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong> only energy transitions J →J ± 0, 2 are allowed, where<br />

J is <strong>the</strong> rotational angular momentum quantum number.<br />

The ∆J =0 transitions are added to <strong>the</strong> isotropic <strong>scatter<strong>in</strong>g</strong> component and make up one quarter of<br />

<strong>the</strong> anisotropic energy [Bhagavantam, 1931, Young, 1982]. The elastic <strong>scatter<strong>in</strong>g</strong> component conta<strong>in</strong>s<br />

<strong>the</strong> isotropic part plus one quarter of <strong>the</strong> anisotropic part and is described by <strong>the</strong> Cabannes cross<br />

section<br />

σ cab,air (ν ′ ) =<br />

∑<br />

χ i f cab,i (ν ′ )σ ray,i (ν ′ ), (2.26)<br />

i=N 2 ,O 2 ,Ar<br />

where <strong>the</strong> elastic fraction [Kattawar et al., 1981, Jo<strong>in</strong>er et al., 1995] is given by<br />

f cab,i (ν ′ ) = 18 + ε i(ν ′ )<br />

18 + 4ε i (ν ′ ) . (2.27)<br />

The rest of <strong>the</strong> anisotropic part is scattered <strong>in</strong>elastically due to <strong>Raman</strong> <strong>scatter<strong>in</strong>g</strong>. The total rotational<br />

<strong>Raman</strong> cross section for each molecule is given by<br />

σ ramtot,i (ν ′ ) = [1 − f cab,i (ν ′ )]σ ray,i (ν ′ ). (2.28)<br />

The energy conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> total rotational <strong>Raman</strong> cross section is distributed to o<strong>the</strong>r wavenumbers<br />

accord<strong>in</strong>g to<br />

σ ram,i (ν;ν ′ ) = 4 [ ν<br />

] 4<br />

3 f i(T,J)b i (J →J ′ ) σramtot,i (ν ′ ), (2.29)<br />

ν ′

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!