24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

50 Chapter 3<br />

The forward and adjo<strong>in</strong>t formulations of radiative transfer do not describe two <strong>in</strong>dependent radiative<br />

transfer problems. The correspond<strong>in</strong>g <strong>in</strong>tensity fields I and I † are l<strong>in</strong>ked by <strong>the</strong> relation<br />

〈S † , I〉 = 〈I † , S〉 , (3.39)<br />

which can be derived us<strong>in</strong>g Eqs. (3.2), (3.32) and (3.33). For <strong>the</strong> simulation of a radiation effect E we<br />

choose <strong>the</strong> correspond<strong>in</strong>g response function R as <strong>the</strong> adjo<strong>in</strong>t source S † . In this particular case, <strong>the</strong> left<br />

hand side of Eq. (3.39) represents <strong>the</strong> def<strong>in</strong>ition of <strong>the</strong> radiation effect E <strong>in</strong> Eq. (3.13) and <strong>the</strong> right<br />

hand side provides a second recipe to calculate E us<strong>in</strong>g <strong>the</strong> adjo<strong>in</strong>t field. Here, one weighs <strong>the</strong> source<br />

S by <strong>the</strong> adjo<strong>in</strong>t <strong>in</strong>tensity field I † and <strong>in</strong>tegrates <strong>the</strong> product over <strong>the</strong> phase space of <strong>the</strong> problem. In<br />

o<strong>the</strong>r words, <strong>the</strong> adjo<strong>in</strong>t field I † (z,Ω,λ) can be <strong>in</strong>terpreted as <strong>the</strong> importance of <strong>the</strong> source S(z,Ω,λ)<br />

with respect to <strong>the</strong> radiation effect E [Lew<strong>in</strong>s, 1965, Gerstl, 1980]. In particular, due to <strong>the</strong> specific<br />

response function R i <strong>in</strong> Eq. (3.15) <strong>the</strong> solution of <strong>the</strong> adjo<strong>in</strong>t problem<br />

has <strong>the</strong> form<br />

ˆL † o I † i,o = R i (3.40)<br />

I † i,o (z,Ω,λ) = I† i,o (z,Ω,λ v)δ(λ−λ v ). (3.41)<br />

The use of <strong>the</strong> response function as an adjo<strong>in</strong>t source allows one to rewrite <strong>the</strong> perturbation series <strong>in</strong><br />

Eq. (3.31) to first order as<br />

E i = E i,o + 〈I † i,o , ∆ˆLI o 〉 + O(∆ 2 ), (3.42)<br />

where I † o and I o are <strong>the</strong> adjo<strong>in</strong>t and forward solutions of <strong>the</strong> unperturbed radiative transfer problem 1 .<br />

Here, O(∆ 2 ) <strong>in</strong>dicates higher orders of perturbation. Thus, <strong>the</strong> first order perturbation effect is solely<br />

determ<strong>in</strong>ed by <strong>the</strong> adjo<strong>in</strong>t and forward <strong>in</strong>tensity field. This represents a significant simplification for<br />

any computational effort, because <strong>the</strong> numerically expensive calculation of <strong>the</strong> full Green’s function<br />

is avoided.<br />

For <strong>the</strong> numerical calculation of I † i,o ano<strong>the</strong>r advantage of <strong>the</strong> adjo<strong>in</strong>t formulation is that both <strong>the</strong><br />

forward and <strong>the</strong> adjo<strong>in</strong>t formulation can be solved with one radiative transfer code. The def<strong>in</strong>ition of<br />

<strong>the</strong> vector field<br />

Ψ i (z,Ω,λ) = I † i,o (z, −Ω,λ) (3.43)<br />

allows one to transform <strong>the</strong> adjo<strong>in</strong>t equation (3.33) <strong>in</strong>to a correspond<strong>in</strong>g pseudo forward equation<br />

[Bell and Glasstone, 1970, Box et al., 1988, Hasekamp and Landgraf , 2002], viz.<br />

ˆL ps<br />

o Ψ i = S ps<br />

i (3.44)<br />

1 To derive Eq. (3.42) one makes use of <strong>the</strong> fact that <strong>the</strong> operator Ĝ† is <strong>the</strong> adjo<strong>in</strong>t operator of Ĝ. To show this, we<br />

write Eq. (3.39) <strong>in</strong> <strong>the</strong> form 〈S † , ĜS〉 = 〈Ĝ† S † , S〉 us<strong>in</strong>g Eqs. (3.22) and (3.38). This is true for any sources S † and S<br />

and thus Ĝ† is <strong>the</strong> adjo<strong>in</strong>t operator of Ĝ, accord<strong>in</strong>g to <strong>the</strong> def<strong>in</strong>ition <strong>in</strong> Eq. (3.32).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!