24.07.2014 Views

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

Rotational Raman scattering in the Earth's atmosphere ... - SRON

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

76 Chapter 3<br />

3.C Appendix: Evaluation of <strong>the</strong> perturbation <strong>in</strong>tegrals<br />

In Section 3.3.3 we have shown that <strong>the</strong> perturbation <strong>in</strong>tegrals <strong>in</strong> Eq. (3.46) can be expressed by <strong>the</strong><br />

coefficients K m <strong>in</strong> Eqs. (3.51) and (3.54). Subject of this section is <strong>the</strong> fur<strong>the</strong>r evaluation of <strong>the</strong>se<br />

coefficients, where we make use of <strong>the</strong> specific representation of <strong>the</strong> <strong>in</strong>ternal <strong>in</strong>tensity fields, provided<br />

by <strong>the</strong> vector radiative transfer model of Hasekamp and Landgraf [2002].<br />

Due to <strong>the</strong> splitt<strong>in</strong>g of <strong>the</strong> forward and pseudo-forward <strong>in</strong>tensity field <strong>in</strong> <strong>the</strong>ir diffuse and direct<br />

components <strong>in</strong> Eqs. (3.94) and (3.95), we can rewrite coefficient K m <strong>in</strong> Eq. (3.51) as<br />

∫z top<br />

[<br />

K m (λ,λ v ) = dz β scat (z,λ,λ v )<br />

0<br />

N∑<br />

i,j=−N<br />

j≠0<br />

a i a j Ψ +mT<br />

d<br />

(z, −µ i ,λ v )∆Z m (λ,µ j ,µ i )I +m<br />

d<br />

(z,µ j ,λ)<br />

+ 1<br />

2π eτ(z,λ)/µ 0<br />

+ 1<br />

2π<br />

N∑<br />

i=−N<br />

i≠0<br />

1 ∑ N<br />

e −τ(z,λv)/µv<br />

µ v<br />

a i Ψ +mT<br />

d<br />

(z, −µ i ,λ v )∆Z m (λ, −µ 0 ,µ i )F 0<br />

i=−N<br />

i≠0<br />

a i e T i Z m (λ,µ i ,µ v )I +m<br />

d<br />

(z,µ i ,λ)<br />

]<br />

+ 1 1<br />

e −τ(z,λ)/µ 0<br />

e −τ(z,λv)/µv e T<br />

4π 2 i Z m (λ, −µ 0 ,µ v )F 0<br />

µ v<br />

. (3.97)<br />

Here, all <strong>in</strong>tegrations over µ are approximated by a double Gaussian quadrature of <strong>the</strong> order 2N with<br />

Gaussian weights a i and Gaussian streams µ i (i=−N,...,−1, 1,...,N).<br />

To calculate <strong>the</strong> rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegrals over height z, <strong>the</strong> model <strong>atmosphere</strong> is divided <strong>in</strong> homogeneous<br />

layers with height <strong>in</strong>dependent <strong>scatter<strong>in</strong>g</strong> coefficients and <strong>scatter<strong>in</strong>g</strong> phase matrices. The<br />

<strong>in</strong>tensity field with<strong>in</strong> <strong>the</strong> model <strong>atmosphere</strong> is taken from a monochromatic vector radiative transfer<br />

model us<strong>in</strong>g <strong>the</strong> Gauss Seidel iteration approach (for more details see e.g. Landgraf et al. [2001],<br />

Hasekamp and Landgraf [2002]). Here each atmospheric layer is split <strong>in</strong>to optically th<strong>in</strong> sublayers,<br />

which are chosen to be th<strong>in</strong> enough so that any height dependence of <strong>the</strong> <strong>in</strong>tensity field can be neglected<br />

with<strong>in</strong> a sublayer. In this way <strong>the</strong> model <strong>atmosphere</strong> is subdivided <strong>in</strong>to M homogeneous,<br />

optically th<strong>in</strong> layers <strong>in</strong>dicated by an <strong>in</strong>dex k. The <strong>in</strong>tensity field is calculated at <strong>the</strong> layer boundaries<br />

and its height dependence with<strong>in</strong> <strong>the</strong>se layers is described by <strong>the</strong> layer average. So <strong>the</strong> coefficient K m<br />

<strong>in</strong> Eq. (3.97) are given by<br />

[<br />

M∑<br />

∫ zk<br />

∫ zk<br />

K m (λ,λ v ) ≈ β scat,k (λ,λ v ) Λ m k ∆z k + Υ m k e τ(z,λ)/µ 0<br />

dz + Γ m k e −τ(z,λv)/µv dz<br />

k=1<br />

z k−1 z k−1<br />

]<br />

+Θ m k<br />

∫ zk<br />

z k−1<br />

e −τ(z,λ)/µ 0<br />

e −τ(z,λv)µv dz<br />

(3.98)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!