25.07.2014 Views

FIBEROPTIC SENSOR TECHNOLOGY HANDBOOK

FIBEROPTIC SENSOR TECHNOLOGY HANDBOOK

FIBEROPTIC SENSOR TECHNOLOGY HANDBOOK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

cal leads in the vicinity of the vapor. The chopper<br />

is operated at a frequency at which the acoustic aenaitivity<br />

of the absorportion cell is high.<br />

The light from the excitation laser excites<br />

a characteristic absorption line in the molecular spectrum<br />

of the vapor being detected. When the excited<br />

molecules return to equilibrium the temperature of the<br />

vapor Is increased resulting in a preaaure increase.<br />

By chopping (interrupting) the light at a given rate<br />

(frequency), the resultant fluctuation in preasure Is<br />

detected as aound of the same frequency. Even more<br />

desirable 1S to make use of a variable frequency laaer<br />

aa the excitation source. The absorption coefficients<br />

vs. frequency of ambient atmosphere and of methane<br />

whose concentration 1S five times ambient are shown in<br />

Figs. 5.17 and 5.18.<br />

measure strains, electric fields, temperature, acceleration,<br />

and rate of rotation. They differ from the<br />

acoustic and magnetic senaors discussed above that rely<br />

on specialized jacketa and utilize a Mach-Zehnder interferometer.<br />

The electric current and trace vapor sensors<br />

are secondary devices relying on the measurement<br />

of the magnetic field or the temperature in the former<br />

case and the aound associated with the absorption of<br />

light in the latter case.<br />

5.1.7 References<br />

1.<br />

2.<br />

3.<br />

D. Jackson, A. Dandridge, and S. Sheem, Opt. Lett.<br />

~, 139 (1980).<br />

B. Budiansky, D. Drucker, G. Rino, and J. Rice,<br />

APP1. Opt. ~, 4085 (1979).<br />

G. Hocker, Opt. Soc. Am. ~, 320 (1979).<br />

lo”~<br />

WAVELENGTH<br />

Fig. 5.17 The absorption coefficient of ambient atmosphere<br />

aa a function of wavelength.<br />

Provide by D. Leslie, U.S. Naval Reaearch Laboratory.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

N. Lagakos and J. Bucaro, Appl. Opt. — 20, 2716<br />

(1981).<br />

N. Lagakos, T. Hickman, J. Cole and J. Bucaro,<br />

Opt. Lett. ~, 443 (1981).<br />

N. Lagakos, private communication.<br />

A. Yariv and H. Winsor, Opt. Lett. ~, 87 (1980).<br />

J. Jarzynski, J. Cole, J. Bucaro and C. Davia,<br />

Appl. Opt. ~, 3746 (1980).<br />

J. Cole, N. Lagakos, J. Jarzynski, and J. Bucaro,<br />

Opt. Lett. ~, 216 (1981).<br />

K. Koo and G. Sigel, Technical Digest, Optical Fiber<br />

Communication Meeting, Phoenix, Arizona (1982)<br />

p. 72.<br />

A. Dandridge, A. Tveten, and T. Giallorenzi, Electron.<br />

Lett. ~, 523 (1981).<br />

ABSORBERS<br />

TYPE (TORR)<br />

H20 14.260<br />

C02 0,251<br />

03 2.3x lC”5<br />

~’”i<br />

N20 2.1 X1 O-4<br />

co 5.7 x10-5 I<br />

CH4 12’1 0-31 1II I<br />

159627<br />

02<br />

1~ II<br />

WAVELENGTH<br />

22.9°C<br />

JJ<br />

760 TORR<br />

Fig. 5.18 The absorption coefficient of methane gas<br />

as a function of wavelength for a concentration<br />

of 7.6 x 10-3 torr (5 x ambient).<br />

Provide by D. Leslie, U.S. Naval Research Laboratory.<br />

12.<br />

5.2<br />

D. Lealie, G. Trusty, A. Dandridge and T. Giallorenzi,<br />

Electron. Lett. ~, 581 (1981).<br />

5.2.1 General<br />

INTENSITY MODULATED <strong>FIBEROPTIC</strong> <strong>SENSOR</strong>S<br />

The second type of fiberoptic sensor to be<br />

diacusaed is referred to as an intensity-modulated aensor.<br />

Ita basic configuration is sketched in block diagram<br />

form in Fig. 5-19. The output lightwave from an<br />

OPTICAL<br />

SOURCE<br />

+ l~”T<br />

<strong>SENSOR</strong><br />

OPTICAL<br />

DETECTOR<br />

.<br />

‘OUT<br />

5.1.6 Summary<br />

The acoustic and magnetic field sensors described<br />

above represent primary measurement devices.<br />

Other primary measurement devices include sensors to<br />

TIME<br />

TIME<br />

TIME<br />

Fig. 5.19 A generalized intensity-type fiberoptic<br />

senaing system.<br />

5-7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!