10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

d33 eff (pm/V)<br />

80<br />

3<br />

40<br />

4<br />

0<br />

-40<br />

1<br />

2<br />

-80<br />

(a)<br />

10 -3 10 -2 0.1 1 10 10 2<br />

r/R 0<br />

d33 eff (normalized)<br />

d33 eff (pm/V)<br />

1.<br />

0.5<br />

0.<br />

-0.5<br />

-1<br />

10 -3 10 -2 0.1 1 10 10 2<br />

r/R 0<br />

80 3<br />

40<br />

0<br />

(c)<br />

-40 1<br />

2<br />

-80<br />

10 -3 10 -2 0.1 1 10 10 2<br />

r/d<br />

(b)<br />

4<br />

Figure 16. Absolute (a), (c) and normalized (b) piezoresponse d33 eff (r) versus the doma<strong>in</strong> radius for the po<strong>in</strong>t charge (c) and sphere–plane<br />

(a), (b) models of the tip at ν = 0.35 for BTO (1), PZT6B (2), PTO (3), LNO (4). Reproduced from [186]. Copyright 2007, American<br />

Institute of Physics.<br />

h Pade<br />

2.3.4.4. Response of axially symmetric cyl<strong>in</strong>drical doma<strong>in</strong>.<br />

The deconvolution of PFM spectroscopy data requires analysis<br />

−2<br />

1+2γ<br />

(1+γ ) 2 − 2 (1+ν) s<br />

1+γ s + π/8 , (2.24b)<br />

of the PFM signal from a f<strong>in</strong>ite doma<strong>in</strong> centered at the tip apex,<br />

as shown <strong>in</strong> figure 14(b). For most <strong>ferroelectric</strong> <strong>materials</strong>,<br />

doma<strong>in</strong>s form highly elongated needles extend<strong>in</strong>g deep <strong>in</strong>to<br />

the material, whereas the electrostatic field is concentrated <strong>in</strong><br />

the near-surface region. Hence, <strong>in</strong>terpretation of PFM data<br />

can be performed us<strong>in</strong>g a model of a semi-<strong>in</strong>f<strong>in</strong>ite cyl<strong>in</strong>drical<br />

doma<strong>in</strong>. Hence, the response can be estimated assum<strong>in</strong>g that<br />

the doma<strong>in</strong> wall is purely cyl<strong>in</strong>drical and the charged tip is<br />

located at the doma<strong>in</strong> center (0,0,0). From equation (2.15),<br />

the displacement at the center of a doma<strong>in</strong> is<br />

(∫ ∞<br />

∫ r<br />

)<br />

u 3 (0,r)=2π ρdρW 3jkl (ρ)−2<br />

0<br />

0<br />

ρdρW 3jkl (ρ) d lkj .<br />

(2.22)<br />

Here the resolution<br />

√<br />

function, W 3jkl (ρ), is given by<br />

equation (2.16) for ξ1 2 + ξ 2 2 = ρ, while u 1 = u 2 = 0as<br />

follows from the symmetry considerations. Both for the po<strong>in</strong>t<br />

charge and the sphere–plane models, the vertical displacement<br />

can be obta<strong>in</strong>ed <strong>in</strong> a simple analytical form as<br />

⎧<br />

Q<br />

( r<br />

)<br />

2πε 0 (ε e + κ) d hPade jk<br />

d ,γ,ν d kj ,<br />

⎪⎨<br />

po<strong>in</strong>t charge model,<br />

u 3 = ( )<br />

(2.23)<br />

r<br />

Uh Pade<br />

jk<br />

,γ,ν d kj ,<br />

⎪⎩<br />

fR 0<br />

sphere–plane model.<br />

Integral representations for functions h jk (s,γ,ν)are derived<br />

<strong>in</strong> [186]. Their polynomial and exponential Pade<br />

approximations are derived <strong>in</strong> [186]. For γ ∼ = 1 and s>0.1<br />

the follow<strong>in</strong>g simple approximations are obta<strong>in</strong>ed:<br />

h Pade<br />

33 (s, γ) ≈− 1+2γ 1+2γ<br />

+2<br />

2<br />

(1+γ ) (1+γ ) 2 · s<br />

s + π/8 , (2.24a)<br />

h Pade<br />

13 (s, γ, ν) ≈ 1+2γ<br />

(1+γ ) 2 − 2 (1+ν)<br />

1+γ<br />

(<br />

)<br />

51 (s, γ) ≈− γ 2<br />

(1+γ ) 2 +2 γ 2<br />

(1+γ ) 2 ·<br />

s 2<br />

2 γ 2<br />

(1+γ ) 2 +5πs/8+s 2 .<br />

(2.24c)<br />

For good tip–surface contact, the piezoresponse signal is d33 eff =<br />

u 3 (r)/U and can be written as d33 eff = h 13d 31 + h 51 d 15 + h 33 d 33 .<br />

Piezoresponse d33 eff (r) versus the cyl<strong>in</strong>drical doma<strong>in</strong> radius<br />

for the sphere–plane and po<strong>in</strong>t charge models of the tip<br />

for different <strong>ferroelectric</strong> <strong>materials</strong> is shown <strong>in</strong> figure 16.<br />

Similarly to doma<strong>in</strong> wall imag<strong>in</strong>g, the best sensitivity to small<br />

doma<strong>in</strong>s formed below the tip can be achieved <strong>in</strong> BTO, whereas<br />

the worst one corresponds to LNO <strong>in</strong>dependently of the tip<br />

representation.<br />

From the data <strong>in</strong> figure 16, the coercive bias <strong>in</strong> the PFM<br />

hysteresis loop measurements (i.e. when the response is zero,<br />

correspond<strong>in</strong>g to equality of the PFM signal from the nascent<br />

doma<strong>in</strong> and the surround<strong>in</strong>g unswitched matrix) <strong>in</strong> the po<strong>in</strong>t<br />

contact approximation corresponds to a doma<strong>in</strong> size of the<br />

order of 0.1R 0 (for BTO) to 0.7R 0 (for PZT6B and LNO).<br />

This suggests that the early steps of the switch<strong>in</strong>g process are<br />

local, i.e. the <strong>in</strong>formation is collected from the area below the<br />

characteristic tip size. Furthermore, the significant (∼10%)<br />

deviations of the PFM signal from constant beg<strong>in</strong> for doma<strong>in</strong><br />

sizes well below (factor of 10–30) the characteristic tip size.<br />

Therefore, the <strong>in</strong>itial nucleation stages can be probed even<br />

when the doma<strong>in</strong> is extremely small (on the order of several<br />

nanometers (for R 0 = 50 nm)). On the other hand, the<br />

response saturates fairly slowly with the doma<strong>in</strong> size, and<br />

hence the ‘tails’ of the hysteresis loop conta<strong>in</strong> <strong>in</strong>formation on<br />

doma<strong>in</strong> sizes well above the tip size.<br />

To summarize, the analytical expressions equations (2.23)<br />

and (2.24a)–(2.24c) relate the piezoresponse signal measured<br />

at the center of the doma<strong>in</strong> d33 eff (r) and the doma<strong>in</strong> radius.<br />

This allows the doma<strong>in</strong> radius–voltage dependence r(U) to be<br />

reconstructed from the experimental data of the piezoresponse<br />

hysteresis d33 eff (U) once the tip parameters are determ<strong>in</strong>ed us<strong>in</strong>g<br />

an appropriate calibration procedure (e.g. from the doma<strong>in</strong> wall<br />

profile).<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!