10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

High Low<br />

ττ τ<br />

2<br />

1<br />

Amplitude<br />

(a)<br />

Time<br />

(b)<br />

Vac<br />

δτ<br />

τ 3<br />

V<br />

tip<br />

= V<br />

dc<br />

+ V<br />

ac<br />

s<strong>in</strong>ωt<br />

−<br />

V c<br />

−<br />

R 0<br />

Response<br />

+<br />

R s<br />

−<br />

R<br />

R <strong>in</strong>it<br />

−<br />

V c<br />

Bias<br />

(c)<br />

−<br />

R s<br />

(d)<br />

−<br />

R 0<br />

+<br />

V c<br />

Figure 37. (a) Switch<strong>in</strong>g and (b) prob<strong>in</strong>g waveforms <strong>in</strong> SS-PFM. (c) Data acquisition sequence. (d) Schematics of well-saturated<br />

electromechanical hysteresis loop <strong>in</strong> the PFM experiment. Forward and reverse coercive voltages, V + and V − , nucleation voltages, V<br />

c<br />

+ and<br />

Vc −,<br />

forward and reverse saturation and remanent responses, R+ 0 , R− 0 , R+ s and R− s , are shown. Also shown is the <strong>in</strong>itial response, R <strong>in</strong>it. The<br />

work of switch<strong>in</strong>g A s is def<strong>in</strong>ed as the area with<strong>in</strong> the loop. The impr<strong>in</strong>t bias and maximum switchable <strong>polarization</strong> are def<strong>in</strong>ed as<br />

Im = V<br />

0 + − V −<br />

0<br />

and R m = R<br />

s + − R− s<br />

correspond<strong>in</strong>gly. Adapted with permission from [328]. Copyright 2006, American Institute of Physics.<br />

hysteresis loops. This approach was later used by<br />

several groups to probe crystallographic orientation and<br />

microstructure effects on switch<strong>in</strong>g behavior [157, 162, 324–<br />

327]. Recently, PFM spectroscopy has been extended to<br />

an imag<strong>in</strong>g mode us<strong>in</strong>g an algorithm for fast (30–100 ms)<br />

hysteresis loop measurements developed by Jesse et al [328].<br />

In the switch<strong>in</strong>g spectroscopy PFM (SS-PFM), hysteresis<br />

loops are acquired at each po<strong>in</strong>t of the image and analyzed<br />

to yield 2D maps of impr<strong>in</strong>t, coercive bias and work of<br />

switch<strong>in</strong>g, provid<strong>in</strong>g a comprehensive description of the<br />

switch<strong>in</strong>g behavior of the material at each po<strong>in</strong>t.<br />

Below, we summarize the technical aspects of voltage and<br />

time spectroscopy <strong>in</strong> PFM, discuss relevant theoretical aspects<br />

and summarize recent experimental advances.<br />

4.1. Experimental apparatus for PFS and SS-PFM<br />

Dur<strong>in</strong>g the acquisition of a hysteresis loop piezoresponse force<br />

spectroscopy (PFS), the tip is fixed at a given location on<br />

the surface and the waveform V tip = V probe (t) + V ac cos ωt<br />

is applied to the tip. V ac is the amplitude of the PFM driv<strong>in</strong>g<br />

signal. The prob<strong>in</strong>g signal, V probe (t), is shown <strong>in</strong> figure 37 and<br />

is composed of a sequence of pulses with amplitude, V i , and<br />

length, τ 1 (HIGH state) separated by <strong>in</strong>tervals of zero bias last<strong>in</strong>g<br />

for τ 2 (LOW state). The measured responses yield on-field and<br />

off-field hysteresis loops.<br />

To generate SS-PFM maps, the hysteresis loops are<br />

acquired over M × M po<strong>in</strong>t mesh with spac<strong>in</strong>g, l, between<br />

po<strong>in</strong>ts. The hysteresis curves are collected at each po<strong>in</strong>t and<br />

stored <strong>in</strong> a 3D data array for subsequent analysis. Parameters<br />

describ<strong>in</strong>g the switch<strong>in</strong>g process such as positive and negative<br />

coercive bias, impr<strong>in</strong>t voltage and saturation response can<br />

be extracted from the data sets and plotted as 2D maps;<br />

alternatively, hysteresis loops from selected po<strong>in</strong>t(s) can be<br />

extracted and analyzed.<br />

An ideal hysteresis loop for electromechanical measurements<br />

is shown <strong>in</strong> figure 37(d). Acquired at each po<strong>in</strong>t is<br />

a hysteresis loop conta<strong>in</strong><strong>in</strong>g the forward, R + (V ), and reverse,<br />

R − (V ), branches. The zero of R + (V ) def<strong>in</strong>es positive coercive<br />

bias, V + , and the zero of R − (V ) def<strong>in</strong>es negative coercive bias,<br />

V − . The impr<strong>in</strong>t is def<strong>in</strong>ed as Im = (V + + V − )/2. The values<br />

of R<br />

0 + = R+ (0) and R − 0<br />

= R− (0) def<strong>in</strong>e positive and negative<br />

remanent responses, while R 0 = R<br />

0 + − R− 0<br />

is the remanent<br />

switchable response. F<strong>in</strong>ally, R + (+∞) = R − (+∞) = R s<br />

+<br />

and R + (−∞) = R − (−∞) = Rs<br />

− are the saturation responses<br />

and R s = R s + − R− s is the maximal switchable response. In<br />

some cases, contributions of electrostatic signals (tip electrode)<br />

or bimorph-like substrate bend<strong>in</strong>g (macroscopic capacitors)<br />

necessitate the <strong>in</strong>troduction of vertical offset to symmetrize<br />

the loop. F<strong>in</strong>ally, the forward and reverse doma<strong>in</strong> nucleation<br />

voltages, V c<br />

+ and Vc − , correspond<strong>in</strong>g to the cross-over<br />

between constant and rapidly chang<strong>in</strong>g regions of the loop,<br />

are attributable to doma<strong>in</strong> nucleation below the tip. Additionally,<br />

the effective work of switch<strong>in</strong>g is def<strong>in</strong>ed as the area with<strong>in</strong><br />

a hysteresis loop,<br />

A s =<br />

∫ +∞<br />

−∞<br />

(<br />

R + (V ) − R − (V ) ) dV. (4.1)<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!