10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

Figure 2. Applications of PFM. (a) Doma<strong>in</strong> imag<strong>in</strong>g (b) doma<strong>in</strong> pattern<strong>in</strong>g, (c) studies of doma<strong>in</strong> <strong>dynamics</strong>, (d) phase transformations,<br />

(e) spectroscopy and (f ) switch<strong>in</strong>g spectroscopy mapp<strong>in</strong>g. Panel (a) reproduced with permission from [102]. Panel (c) reproduced with<br />

permission from [64] and copyright 2002, American Physical Society. Panel (d) reproduced with permission from [103]. Copyright 2007,<br />

American Institute of Physics. Panels (e) and (f ) are reproduced from [104]. Copyright 2007, IOP Publish<strong>in</strong>g.<br />

Doma<strong>in</strong> wall motion and geometry are strongly affected<br />

by the presence of defects that can act as p<strong>in</strong>n<strong>in</strong>g centers. The<br />

<strong>in</strong>terplay between the driv<strong>in</strong>g force and disorder gives rise to a<br />

broad spectrum of doma<strong>in</strong> wall motion <strong>dynamics</strong>, <strong>in</strong>clud<strong>in</strong>g<br />

reversible vibrations, creep and slid<strong>in</strong>g. The <strong>in</strong>terface<br />

<strong>dynamics</strong> <strong>in</strong> disordered media was studied by Natterman [89]<br />

and Giamarchi [90] and experimental studies have recently<br />

been summarized by Kleeman [91]. Remarkably, most<br />

statistical theories are universal and can be developed for<br />

a given class of order parameter for cases of the p<strong>in</strong>n<strong>in</strong>g<br />

controlled by s<strong>in</strong>gle defects (strong p<strong>in</strong>n<strong>in</strong>g) or by fluctuations<br />

<strong>in</strong> defect densities (weak p<strong>in</strong>n<strong>in</strong>g). The elementary<br />

mechanisms of p<strong>in</strong>n<strong>in</strong>g and defect–doma<strong>in</strong> wall <strong>in</strong>teractions<br />

were studied on a mesoscopic level by Sidork<strong>in</strong> [92].<br />

In most <strong>materials</strong>, the nucleation and wall motion<br />

proceed simultaneously, result<strong>in</strong>g <strong>in</strong> complex k<strong>in</strong>etics. The<br />

realization of the role of defects on <strong>polarization</strong> switch<strong>in</strong>g<br />

led to a number of statistical theories for the description of<br />

switch<strong>in</strong>g phenomena by extend<strong>in</strong>g the Kolmogorov–Avrami<br />

[93, 94] theory to <strong>polarization</strong> switch<strong>in</strong>g [95–97]. In these<br />

approaches, the spatial and energy distribution of defects<br />

become the fundamental parameter describ<strong>in</strong>g the switch<strong>in</strong>g<br />

process. F<strong>in</strong>ally, a number of authors report on unusual<br />

physical phenomena dur<strong>in</strong>g doma<strong>in</strong> nucleation, <strong>in</strong>clud<strong>in</strong>g<br />

wall-mediated switch<strong>in</strong>g (see, e.g., [98]) and skyrmion<br />

emission [99].<br />

1.3. <strong>Local</strong> prob<strong>in</strong>g of <strong>ferroelectric</strong> <strong>materials</strong><br />

Understand<strong>in</strong>g <strong>polarization</strong> reversal mechanisms and doma<strong>in</strong><br />

wall <strong>dynamics</strong> on the nanometer scale has received a huge<br />

impetus from the development of imag<strong>in</strong>g probes capable of<br />

address<strong>in</strong>g doma<strong>in</strong> behavior locally. S<strong>in</strong>ce the 1950s, optical<br />

microscopy observations [4] <strong>in</strong> polarized light, us<strong>in</strong>g doma<strong>in</strong><br />

decoration or chemical etch<strong>in</strong>g, have been used to explore<br />

doma<strong>in</strong> structures and geometries and k<strong>in</strong>etics of wall motion<br />

[3, 4, 100, 101]. The limit<strong>in</strong>g factor has been the destructive<br />

nature of etch<strong>in</strong>g and low (∼micrometers) spatial resolution<br />

of optical methods that limited the studies to s<strong>in</strong>gle crystals<br />

and large (>1 µm) gra<strong>in</strong> ceramics.<br />

The revolution <strong>in</strong> nanoscale doma<strong>in</strong> studies occurred<br />

with the <strong>in</strong>vention of piezoresponse force microscopy (PFM),<br />

the primary topic of this review. The multitude of PFM<br />

applications is illustrated <strong>in</strong> figure 2. Here, we focus on the<br />

basic mechanism underp<strong>in</strong>n<strong>in</strong>g PFM operation, imag<strong>in</strong>g and<br />

resolution theory, and the theory of tip-<strong>in</strong>duced <strong>polarization</strong><br />

switch<strong>in</strong>g on ideal surfaces and <strong>in</strong> the presence of defects.<br />

Furthermore, we discuss recent applications of spectroscopic<br />

imag<strong>in</strong>g modes <strong>in</strong> PFM, <strong>in</strong>clud<strong>in</strong>g space- and time-resolved<br />

spectroscopies, and illustrate their applications for prob<strong>in</strong>g<br />

local switch<strong>in</strong>g behavior <strong>in</strong> nanoscale <strong>ferroelectric</strong>s. This<br />

review complements several recent reviews address<strong>in</strong>g<br />

phenomenological aspects of PFM imag<strong>in</strong>g and applications<br />

[105–111].<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!