10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

‘threshold’ doma<strong>in</strong> nucleation is similar to the well-known where<br />

first order phase transition (compare figure 31(e) with the<br />

well-known dependence of the free energy profile on the order<br />

parameter for first order <strong>ferroelectric</strong>s).<br />

In the thermally <strong>in</strong>duced nucleation limit, the doma<strong>in</strong><br />

nucleation process is analyzed as a thermally activated motion<br />

<strong>in</strong> the phase space of the system along the m<strong>in</strong>imum energy<br />

path connect<strong>in</strong>g the orig<strong>in</strong> and one of the local m<strong>in</strong>ima. The<br />

relaxation time necessary for the stable doma<strong>in</strong> formation<br />

at U cr is maximal and the critical slow<strong>in</strong>g down appears<br />

<strong>in</strong> accordance with the general theory of phase transitions.<br />

With<strong>in</strong> the framework of the activation rate theory, the doma<strong>in</strong><br />

nucleation takes place at a higher activation voltage U a<br />

determ<strong>in</strong>ed from the condition (U a ) = E a , correspond<strong>in</strong>g<br />

to the activation time τ = τ 0 exp(E a /k B T). For <strong>in</strong>stance,<br />

the activation energy E a = 20k B T corresponds to a relatively<br />

fast nucleation time τ ∼ 10 −3 s for phonon relaxation time<br />

τ 0 = 10 −12 s, while the condition E a 2k B T corresponds to<br />

‘<strong>in</strong>stant’ or thermal nucleation.<br />

×<br />

The difference between the voltages correspond<strong>in</strong>g to<br />

the formation of a saddle po<strong>in</strong>t and a stable doma<strong>in</strong>, U S −<br />

U cr , determ<strong>in</strong>es the width of the thermodynamic hysteresis<br />

loop (see figures 31(e)–(g)). More realistic models of<br />

piezoresponse hysteresis loop formation consider doma<strong>in</strong> wall<br />

p<strong>in</strong>n<strong>in</strong>g effects. In the weak p<strong>in</strong>n<strong>in</strong>g limit, the doma<strong>in</strong><br />

growth <strong>in</strong> the forward direction is assumed to follow the<br />

thermodynamic energy m<strong>in</strong>imum, while with decreas<strong>in</strong>g bias,<br />

the doma<strong>in</strong> rema<strong>in</strong>s stationary due to doma<strong>in</strong> wall p<strong>in</strong>n<strong>in</strong>g<br />

by lattice and atomic defects. For stronger p<strong>in</strong>n<strong>in</strong>g, the<br />

doma<strong>in</strong> size is limited by the wall mobility <strong>in</strong> the tip field<br />

and <strong>ferroelectric</strong> (as, e.g., studied for doma<strong>in</strong> wall dynamic<br />

by Molotskii <strong>in</strong> [311]), and the full analysis of this problem<br />

rema<strong>in</strong>s the matter of future research.<br />

3.3.2. Analytical treatment for Landauer geometry. The<br />

<strong>in</strong>tegral expressions for the free energy components <strong>in</strong><br />

equation (3.1b) are extremely complex, and can be evaluated<br />

analytically only for simple doma<strong>in</strong> configurations. Here we<br />

summarize the Pade approximations for the <strong>in</strong>dividual terms <strong>in</strong><br />

the free energy (r, l, U) = S (r, l)+ p (r,l,U)+ D (r, l) of<br />

the semi-ellipsoidal doma<strong>in</strong> for <strong>ferroelectric</strong> semiconductors<br />

allow<strong>in</strong>g for Debye screen<strong>in</strong>g and uncompensated surface<br />

charges.<br />

The doma<strong>in</strong> wall energy has the form<br />

(<br />

r<br />

S (r, l) = πψ S lr<br />

l + arcs<strong>in</strong> √ )<br />

1 − r 2 /l<br />

√ 2<br />

1 − r2 /l 2<br />

(<br />

)<br />

≈ π 2 ψ S lr<br />

1+ 2 (r/l)2 , (3.2)<br />

2 4+π (r/l)<br />

where r is the semi-ellipsoid doma<strong>in</strong> radius, l is the doma<strong>in</strong><br />

length.<br />

The Pade approximation for the de<strong>polarization</strong> energy<br />

of a semi-ellipsoidal doma<strong>in</strong> <strong>in</strong>clud<strong>in</strong>g the effects of Debye<br />

screen<strong>in</strong>g <strong>in</strong> the material is<br />

DL (r, l) = 4πP2 S r2 R d n D (r, l)<br />

ε 0 κ 4n D (r, l) +3R d (γ/l) , (3.3a) ×<br />

32<br />

n D (r, l) =<br />

⎛ (√ )<br />

(rγ/l)2 ⎝ arcth 1 − (rγ/l)<br />

2<br />

1 − (rγ/l) 2 √<br />

1 − (rγ/l)<br />

2<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

⎞<br />

− 1⎠<br />

(3.3b)<br />

is the de<strong>polarization</strong> factor, κ = √ ε a ε c is the effective<br />

dielectric constant of the medium, and, γ = √ ε c /ε a is the<br />

anisotropy factor. For an <strong>in</strong>f<strong>in</strong>ite Debye length (i.e. a rigid<br />

dielectric), equation (3.3a) becomes the well-known Landauer<br />

de<strong>polarization</strong> energy.<br />

The energy of the de<strong>polarization</strong> field created by the<br />

surface charges (σ S − P S ) located on the doma<strong>in</strong> face has the<br />

form<br />

4πr 3 R d<br />

DS (r, l) ≈<br />

ε 0 (16κr +3πR d (κ + ε e ))<br />

(<br />

(σ S − P S ) 2 + 2P S (σ S − P S )<br />

1+(l/rγ)<br />

)<br />

. (3.4)<br />

The surface charge density σ S is −P S σ S P S , while<br />

σ S =−P S without screen<strong>in</strong>g charges.<br />

The driv<strong>in</strong>g force for the switch<strong>in</strong>g process is the<br />

<strong>in</strong>teraction energy determ<strong>in</strong>ed by the electrostatic field<br />

structure produced by the probe. The Pade approximation for<br />

the <strong>in</strong>teraction energy between a spherical tip and the surface<br />

based on image charge series is<br />

p (r, l, U) ≈ 4πε 0 ε e UR 0<br />

∞ ∑<br />

m=0<br />

q m (3.5)<br />

× R d ((σ S − P S ) F W (r, 0,d − r m ) +2P S F W (r, l, d − r m ))<br />

ε 0<br />

(<br />

(κ + ε e ) R d +2κ √ (d − r m ) 2 + r 2 ) .<br />

The image charges q m are located at distances r m from the<br />

spherical tip center, where<br />

( ) κ − m εe s<strong>in</strong>h (θ)<br />

q 0 = 1, q m =<br />

κ + ε e s<strong>in</strong>h ((m +1) θ) , (3.6a)<br />

r 0 = 0, r m = R 0<br />

s<strong>in</strong>h (mθ)<br />

s<strong>in</strong>h ((m +1) θ) ,<br />

cosh (θ) = d R 0<br />

. (3.6b)<br />

Here R 0 is the tip radius of curvature, R is the distance<br />

between the tip apex and the sample surface, so d = R 0 + R.<br />

The function<br />

F W (r, l, z) ≈<br />

r 2<br />

√<br />

r2 + z 2 + z + (l/γ)<br />

(3.7)<br />

is the Pade approximation of a cumbersome exact expression<br />

obta<strong>in</strong>ed orig<strong>in</strong>ally by Molotskii [309].<br />

Under the typical condition R ≪ R 0 , i.e. when<br />

the tip is <strong>in</strong> contact with the surface, equation (3.5) can be<br />

approximated as<br />

R d UC t /ε 0<br />

p (r, l) ≈<br />

(κ + ε e ) R d +2κ √ d 2 + r<br />

(<br />

2<br />

(σ S − P S ) r 2<br />

√<br />

r2 + d 2 + d + 2P S r 2<br />

√<br />

r2 + d 2 + d + (l/γ)<br />

)<br />

, (3.8)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!