10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

(a)<br />

z<br />

ρ ϕ Q<br />

d<br />

25 nm 1.2<br />

R<br />

1<br />

0<br />

r<br />

Q<br />

0.8<br />

ε e d<br />

l<br />

0.6<br />

(b) 25 30 35 40 45<br />

ε e<br />

ε c<br />

ε a<br />

1.8<br />

1.6<br />

1.4<br />

Doma<strong>in</strong> radius [nm]<br />

(c)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

0 5 10 15 20 25 30<br />

Tip bias [V]<br />

Electric field [MV/m]<br />

(d)<br />

10 0<br />

10 -1<br />

10 -2<br />

Nucleation<br />

Ea [eV]<br />

0<br />

0 5 10 15<br />

0 5 10 15 20 25 30<br />

Tip Bias [V]<br />

Figure 42. (a) Schematic of the tip <strong>in</strong>teraction with a semiellipsoidal doma<strong>in</strong> and high-resolution PFM amplitude image of a doma<strong>in</strong> wall <strong>in</strong><br />

BFO. (b) Doma<strong>in</strong> wall profile and fit for several tip models. (c) Doma<strong>in</strong> radius deconvoluted from the hysteresis data <strong>in</strong> the po<strong>in</strong>t charge<br />

model. (d) Electric field on the doma<strong>in</strong> boundary. (Inset) Activation energy for different models. Reproduced from [350]. Copyright 2007,<br />

National Academy of Sciences.<br />

4<br />

3<br />

2<br />

1<br />

U [V]<br />

Equations (4.2)–((4.6a) and (4.6b)) allow one to deconvolute<br />

nascent doma<strong>in</strong> sizes from the hysteresis loops of piezoelectric<br />

response, as shown <strong>in</strong> [350]. The doma<strong>in</strong> parameters<br />

are calculated self-consistently from the decoupl<strong>in</strong>g Green<br />

function theory by us<strong>in</strong>g tip geometry determ<strong>in</strong>ed from the<br />

doma<strong>in</strong> wall profile (figure 42). The critical parameters of<br />

the nucleat<strong>in</strong>g doma<strong>in</strong> and the activation energy for nucleation<br />

are determ<strong>in</strong>ed. In particular, the electric field at the doma<strong>in</strong><br />

wall at nucleation was estimated to be close to <strong>in</strong>tr<strong>in</strong>sic<br />

thermodynamic field, a conclusion later confirmed by direct<br />

temperature-dependent measurements of nucleation biases by<br />

UHV PFM [295].<br />

4.3.1.2. Model<strong>in</strong>g loop shape <strong>in</strong> weakly p<strong>in</strong>ned limit. In this<br />

section we analyze the shape of the piezoresponse loop for PZT<br />

<strong>in</strong> the weak p<strong>in</strong>n<strong>in</strong>g limit. To calculate the thermodynamic<br />

hysteresis loop shape from the bias dependence of the doma<strong>in</strong><br />

size, we assume that the doma<strong>in</strong> evolution follows the<br />

equilibrium doma<strong>in</strong> size on the forward branch of the hysteresis<br />

loop. The correspond<strong>in</strong>g piezoelectric loops calculated us<strong>in</strong>g<br />

the thermodynamic parameters derived <strong>in</strong> section 3 us<strong>in</strong>g<br />

formulae <strong>in</strong> subsection 4.3.1.1 are shown <strong>in</strong> figures 43.<br />

Numerically, the results obta<strong>in</strong>ed with<strong>in</strong> the EPCM of<br />

the tip at R d → ∞ can be well approximated by d33 eff =<br />

d ∞ (1 − √ U 0 /U). The deviation from d33 eff = d ∞(1 − U 0 /U)<br />

obta<strong>in</strong>ed with<strong>in</strong> the framework of 1D model [180, 325] could<br />

be related to the dimensionality of the problem.<br />

It is clear from figures 43(b) and (d) that the modified<br />

po<strong>in</strong>t charge model gives the narrower loop that saturates more<br />

quickly than the exact series for sphere–tip <strong>in</strong>teraction energy<br />

and moreover quicker than the capacitance approximation.<br />

This can be expla<strong>in</strong>ed tak<strong>in</strong>g <strong>in</strong>to account the fact that the<br />

distance d between the effective po<strong>in</strong>t charge Q and the sample<br />

surface is smaller <strong>in</strong> κ/ε e ≈ 6 times than the first ones from<br />

the image charges caused by the tip with curvature R 0 .<br />

In [314] the effect of surface screen<strong>in</strong>g and bulk Debye<br />

screen<strong>in</strong>g on piezoresponse loop shape, coercive voltage and<br />

saturation rate was studied. It appeared that the effect of<br />

surface and Debye screen<strong>in</strong>g on piezoresponse loop shape is<br />

complementary with respect to doma<strong>in</strong> nucleation and loop<br />

saturation behavior, namely:<br />

(i) The surface screen<strong>in</strong>g strongly <strong>in</strong>fluences the doma<strong>in</strong><br />

nucleation and the <strong>in</strong>itial stage of growth. The<br />

coercive voltage (loop width) and nucleation voltages are<br />

controlled by σ S value. At the same time, piezoresponse<br />

weakly depends on σ S at high voltages, i.e. surface<br />

screen<strong>in</strong>g does not affect the saturation law.<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!