10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

3.2. Experimental aspects of tip-<strong>in</strong>duced<br />

<strong>polarization</strong> switch<strong>in</strong>g 23<br />

3.3. Theory of tip-<strong>in</strong>duced <strong>polarization</strong> switch<strong>in</strong>g 30<br />

4. Time and voltage spectroscopies <strong>in</strong> PFM 37<br />

4.1. Experimental apparatus for PFS and SS-PFM 38<br />

4.2. Phenomenological theory of doma<strong>in</strong> loop<br />

formation 40<br />

4.3. Hysteresis loop formation 41<br />

4.4. SS-PFM of <strong>polarization</strong> <strong>dynamics</strong> <strong>in</strong><br />

low-dimensional <strong>ferroelectric</strong>s 49<br />

4.5. Time resolved spectroscopies of <strong>ferroelectric</strong>s 51<br />

4.6. Switch<strong>in</strong>g <strong>in</strong> <strong>ferroelectric</strong> capacitors 54<br />

5. Phase-field simulations of local <strong>ferroelectric</strong><br />

switch<strong>in</strong>g mechanism 54<br />

5.1. Phase-field method 56<br />

5.2. Model<strong>in</strong>g the electric potential distribution<br />

from PFM 57<br />

5.3. Nucleation bias 57<br />

5.4. Mesoscopic switch<strong>in</strong>g mechanism <strong>in</strong> a s<strong>in</strong>gle<br />

doma<strong>in</strong> 58<br />

5.5. <strong>Local</strong> <strong>ferroelectric</strong> switch<strong>in</strong>g across a<br />

ferroelastic tw<strong>in</strong> wall 58<br />

5.6. Nucleation potential distribution <strong>in</strong> a doma<strong>in</strong><br />

structure 59<br />

6. Advanced topics <strong>in</strong> PFM of <strong>ferroelectric</strong>s 60<br />

6.1. Polarization mediated surface chemistry 60<br />

6.2. PFM <strong>in</strong> a liquid environment 60<br />

6.3. PFM and transport measurements 60<br />

7. Summary 61<br />

Acknowledgments 61<br />

References 62<br />

1. Physics and applications of <strong>ferroelectric</strong> <strong>materials</strong><br />

1.1. Ferroelectric <strong>materials</strong> and applications<br />

Ferroelectric <strong>materials</strong> have become the prototypical example<br />

of functional oxides s<strong>in</strong>ce the discovery of <strong>ferroelectric</strong>ity <strong>in</strong><br />

BaTiO 3 (BTO) <strong>in</strong> the mid-1940s [1, 2]. For several decades,<br />

<strong>ferroelectric</strong> ceramics and s<strong>in</strong>gle crystals were explored as<br />

<strong>materials</strong> for ultrasonic transducers <strong>in</strong> SONAR systems and,<br />

later, medical ultrasound imag<strong>in</strong>g [3–7]. Correspond<strong>in</strong>gly,<br />

much of the early research <strong>in</strong> the field was driven by<br />

the applications of <strong>ferroelectric</strong>s as electromechanically<br />

active <strong>materials</strong> [8]. The advances <strong>in</strong> th<strong>in</strong> film synthesis<br />

and microfabrication technologies <strong>in</strong> the last two decades<br />

have resulted <strong>in</strong> rapid development of electromechanical<br />

applications of <strong>ferroelectric</strong>s on the micrometer scale <strong>in</strong><br />

microelectromechanical systems and actuators [9–12].<br />

The synergy between the advances <strong>in</strong> s<strong>in</strong>gle crystal growth<br />

and basic studies of <strong>ferroelectric</strong>s <strong>in</strong> the 1950s and 1960s<br />

has enabled a broad spectrum of applications <strong>in</strong> electrooptical<br />

systems and photothermal imag<strong>in</strong>g [13–16]. As<br />

with electromechanical applications, the current trend <strong>in</strong><br />

m<strong>in</strong>iaturization of device component size resulted <strong>in</strong> multiple<br />

applications of <strong>ferroelectric</strong> <strong>materials</strong> for tunable nanoscale<br />

optics, nanophotonics and plasmonics [17, 18].<br />

From the early days of <strong>ferroelectric</strong>s, much attention has<br />

been paid to the applications of <strong>ferroelectric</strong>s <strong>in</strong> <strong>in</strong>formation<br />

technologies. The presence of two or more stable <strong>polarization</strong><br />

states (figure 1(a)), the ease of <strong>polarization</strong> switch<strong>in</strong>g by<br />

electric field and the small doma<strong>in</strong> wall width suggested<br />

extraord<strong>in</strong>arily high storage densities, while coupl<strong>in</strong>g between<br />

<strong>polarization</strong> and optical and transport properties held the<br />

promise of efficient read-out mechanisms. S<strong>in</strong>ce the early<br />

1950s, a number of patents on <strong>ferroelectric</strong> memory diodes,<br />

<strong>ferroelectric</strong> field-effect transistors and doma<strong>in</strong> wall based<br />

storage have been filed [19–21]. However, the large switch<strong>in</strong>g<br />

biases (≫10 V) required for <strong>polarization</strong> manipulation <strong>in</strong><br />

s<strong>in</strong>gle crystals rendered these applications impractical at<br />

that time. The advances <strong>in</strong> sol–gel film synthesis of th<strong>in</strong><br />

films with coercive biases well below ∼10 V <strong>in</strong> the early<br />

1990s rendered the <strong>in</strong>formation technology applications of<br />

<strong>ferroelectric</strong>s feasible [22, 23]. The first examples were the<br />

<strong>ferroelectric</strong> random access memories (FeRAM), <strong>in</strong> which<br />

the dielectric <strong>in</strong> a standard dynamic random access memory<br />

(DRAM) capacitor is substituted with a <strong>ferroelectric</strong>, add<strong>in</strong>g<br />

the advantage of non-volatility. Similarly, the comb<strong>in</strong>ation<br />

of a semiconductor channel and a <strong>ferroelectric</strong> gate enabled<br />

<strong>ferroelectric</strong> gate transistors. The sem<strong>in</strong>al work by Ahn<br />

et al has demonstrated the potential of <strong>ferroelectric</strong> field<br />

effect manipulation <strong>in</strong> superconduct<strong>in</strong>g, semiconductor and<br />

organic <strong>materials</strong> [24–26]. Future progress <strong>in</strong> this area<br />

requires <strong>ferroelectric</strong>–semiconductor <strong>in</strong>tegration technologies<br />

that preserve <strong>in</strong>terface quality [27–29].<br />

Advances <strong>in</strong> understand<strong>in</strong>g order parameter coupl<strong>in</strong>g <strong>in</strong><br />

strongly correlated oxides and atomic-level control of film<br />

growth <strong>in</strong> molecular beam epitaxy and pulsed laser deposition<br />

(PLD) [30–32] have stimulated <strong>in</strong>terest <strong>in</strong> magnetoelectric<br />

and multiferroic applications [33–37]. Extensive analysis<br />

of the potential applications and relevant fundamental<br />

scientific issues are now available [38–41]. The recently<br />

studied relationship between <strong>ferroelectric</strong>ity and electronic<br />

transport suggests tremendous potential for resistive memory<br />

applications [42–44]. Extend<strong>in</strong>g beyond the realm of<br />

electronic devices, the photovoltaic effect on <strong>ferroelectric</strong><br />

surfaces and <strong>polarization</strong>-controlled reactivity has also been<br />

demonstrated [45–48], and <strong>ferroelectric</strong> lithography has been<br />

used to fabricate nanostructures [49–51].<br />

The fundamental property of <strong>ferroelectric</strong> <strong>materials</strong><br />

that enables their application <strong>in</strong> functional <strong>materials</strong> and<br />

heterostructures is the presence of switchable <strong>polarization</strong><br />

and associated doma<strong>in</strong> structures. Polarization switch<strong>in</strong>g<br />

directly underp<strong>in</strong>s the functionality of data storage [13, 52],<br />

FeRAMs [30, 53] and electroresistive [42, 54] memories. The<br />

motion of doma<strong>in</strong> walls and <strong>in</strong>terface boundaries enables<br />

high electromechanical coupl<strong>in</strong>g coefficients <strong>in</strong> polycrystall<strong>in</strong>e<br />

<strong>ferroelectric</strong>s and relaxors. The cont<strong>in</strong>uous tendency<br />

for m<strong>in</strong>iaturization of electronic and optical components<br />

necessitates the understand<strong>in</strong>g of <strong>ferroelectric</strong> phase stability<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!