10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rep. Prog. Phys. 73 (2010) 056502<br />

Doma<strong>in</strong> radius (nm)<br />

10 3<br />

10 2<br />

10<br />

1<br />

Critical<br />

bias V cr<br />

r~V 2/3<br />

r~V 1/3<br />

LGD-approach<br />

LM-approach<br />

Envelope<br />

Agron<strong>in</strong> data<br />

Activation<br />

bias V a<br />

10 Coercive 10 2 10 3<br />

bias V c Applied bias V (V)<br />

Figure 46. Diagram demonstrat<strong>in</strong>g the ma<strong>in</strong> features of<br />

probe-<strong>in</strong>duced doma<strong>in</strong> formation calculated with<strong>in</strong> the LGD<br />

approach (solid curves), LM approach (dashed curves) and their<br />

envelope (dotted curve). LNO material parameters are the same as<br />

<strong>in</strong> figure 45, ψ S = 0.35Jm −2 , probe surface separation d = 50 nm.<br />

Squares are experimental data reported by Agron<strong>in</strong> et al [359].<br />

Reproduced from [351].<br />

from the free energy excess consist<strong>in</strong>g of the <strong>in</strong>teraction energy,<br />

the doma<strong>in</strong> wall surface energy ψ S and the de<strong>polarization</strong> field<br />

energy. Nonl<strong>in</strong>ear correlation energy contribution is absent<br />

with<strong>in</strong> the rigid approximation. With<strong>in</strong> the LM approach,<br />

the de<strong>polarization</strong> field energy vanishes as 1/l, while the<br />

<strong>in</strong>teraction energy is maximal at l →∞, the condition of<br />

negligible surface energy leads to the doma<strong>in</strong> breakdown<br />

l →∞and the subsequent macroscopic region re-<strong>polarization</strong><br />

even at <strong>in</strong>f<strong>in</strong>itely small bias (if only VP S > 0), while<br />

the hysteresis phenomena or threshold bias (saddle po<strong>in</strong>t)<br />

are absent. Under f<strong>in</strong>ite doma<strong>in</strong> wall energy, the critical<br />

bias V cr and energetic barrier E a of stable doma<strong>in</strong> formation<br />

exist. Activation (or nucleation) bias V a is determ<strong>in</strong>ed from<br />

the condition E a (V a ) = nk B T,where the numerical factor<br />

n = 1 ...25. Usually V a ≫ V cr for thick films.<br />

In figure 46 we compare the ma<strong>in</strong> features of the probe<strong>in</strong>duced<br />

doma<strong>in</strong> formation calculated with<strong>in</strong> the <strong>in</strong>tr<strong>in</strong>sic LGD<br />

approach and the energetic LM approach. For consistency<br />

between the approaches we used the Zhirnov expression [354]<br />

for the doma<strong>in</strong> wall surface energy<br />

(<br />

ψ S = √ 1+ 2 (( Q 2 11 + ) ))<br />

Q2 12 s11 − 2Q 11 Q 12 s 12<br />

β ( s11 2 − )<br />

η<br />

s2 12<br />

× (−2α)3/2 , (4.14)<br />

3β<br />

where Q ij are the electrostriction tensor, s ij are the elastic<br />

compliances.<br />

4.3.2.3. Probe <strong>in</strong>teraction with doma<strong>in</strong> walls. The analytical<br />

model for the <strong>in</strong>teraction of the biased SPM probe and<br />

exist<strong>in</strong>g doma<strong>in</strong> walls opens the way for experimental studies<br />

of microscopic mechanisms of doma<strong>in</strong> wall <strong>polarization</strong><br />

<strong>in</strong>teraction with electric field that can be studied <strong>in</strong> strongly<br />

<strong>in</strong>homogeneous fields of biased force microscope probe. This<br />

problem is similar to that of doma<strong>in</strong> wall p<strong>in</strong>n<strong>in</strong>g on a charged<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

impurity, where the SPM probe acts as a ‘charged impurity’<br />

with controlled strength (controlled by tip bias) positioned at<br />

a given separation from the doma<strong>in</strong> wall. In this context,<br />

the problem of the <strong>in</strong>f<strong>in</strong>itely th<strong>in</strong> <strong>ferroelectric</strong> doma<strong>in</strong> wall<br />

<strong>in</strong>teraction with a charged po<strong>in</strong>t defect was considered by<br />

Sidork<strong>in</strong> [360]; however, neither correlation effects (e.g. f<strong>in</strong>ite<br />

<strong>in</strong>tr<strong>in</strong>sic width of doma<strong>in</strong> walls) nor rigorous de<strong>polarization</strong><br />

field <strong>in</strong>fluence were taken <strong>in</strong>to account. For the description<br />

of doma<strong>in</strong> wall equilibrium position the Laplace tension<br />

conception (whose applicability to <strong>ferroelectric</strong>s has not been<br />

studied <strong>in</strong> detail) was used <strong>in</strong>stead of the conventional LGD<br />

theory, thermodynamic Miller–We<strong>in</strong>reich approach [86] or<br />

their comb<strong>in</strong>ation with molecular <strong>dynamics</strong> and Monte-Carlo<br />

simulations as proposed by Rappe et al [88]. However, they<br />

studied doma<strong>in</strong> wall profile changes <strong>in</strong> homogeneous external<br />

field.<br />

Below we consider the <strong>in</strong>teraction of <strong>ferroelectric</strong> 180 ◦<br />

doma<strong>in</strong> wall <strong>polarization</strong> with a strongly <strong>in</strong>homogeneous<br />

electric field of biased force microscope probe with<strong>in</strong> LGD<br />

thermodynamic approach us<strong>in</strong>g direct variational method (see<br />

figure 47).<br />

The solution of equation (4.8) for the <strong>in</strong>itial flat<br />

doma<strong>in</strong> wall profile positioned at x = x 0 is P 0 (x) =<br />

P<br />

√ S tan h((x − x 0 )/2L ⊥ ), where the correlation length is L ⊥ =<br />

−η/2α, and the spontaneous <strong>polarization</strong> is P<br />

2<br />

S<br />

=−α/β.<br />

Polarization distribution at the sample surface was<br />

derived as<br />

P 3 (x,y,0) ≈ P 0 (x) −<br />

√<br />

ε11 ε 0<br />

−2α<br />

P V d 2<br />

× √<br />

d2 + x 2 + y ( 2 d 2 + x 2 + y 2 + L ⊥ d ).<br />

The variational amplitude P V should be found from Landau–<br />

Khalatnikov equation<br />

τ d dt P V + w 1 P V + w 2 (x 0 ) PV 2 + w 3PV 3 = V (t) , (4.15)<br />

with parameters<br />

w 1 = 1, w 2 (x 0 ) =−<br />

√<br />

3βP S x 0 −2αε11 ε 0<br />

√<br />

(L ⊥ + d) 2 + x0<br />

2 4α 2 (L ⊥ + d) ,<br />

βε 11 ε 0<br />

w 3 =<br />

4α 2 (L ⊥ + d) 2 .<br />

In the decoupl<strong>in</strong>g approximation and object transfer functions<br />

approach (see [182, 183, 186, 352]), Pade approximations for<br />

the bias V dependence of effective piezoelectric response<br />

P R(V ) = u 3 (x = 0,y = 0)/V were found as<br />

PR(V,x 0 ) = d0 eff (x 0 ) − ε 0ε 11<br />

(4.16)<br />

γ<br />

4∑ B i (γ ) · ln (e + b i (γ )/C) P V (V,x 0 )<br />

×<br />

(b<br />

i=1 i (γ ) +ln(e + b i (γ )/C)) (L ⊥ + d ln (e + b i (γ )/C)) ,<br />

where d0 eff(x<br />

0) is the bias-<strong>in</strong>dependent PFM profile of the<br />

flat 180 ◦ doma<strong>in</strong> wall located at distance x 0 from the<br />

tip apex. Response d0 eff(x<br />

0) was<br />

√<br />

calculated <strong>in</strong> [361].<br />

Dielectric anisotropy factor γ = (ε 33 + ε33 b )/ε 11. Constants<br />

e ≈ 2.718 28 ... is the natural logarithm base<br />

48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!