10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rep. Prog. Phys. 73 (2010) 056502<br />

(a)<br />

Effective piezoresponse PR (pm/V)<br />

10<br />

0<br />

-10<br />

0<br />

-10<br />

x=0<br />

x=20<br />

10 x=60<br />

τ=0<br />

τ≠0<br />

1<br />

-30 0 30<br />

4<br />

-30 0 30<br />

Applied bias V (V)<br />

Polarization P3/PS<br />

1<br />

0<br />

τ=0<br />

5<br />

x=30 10<br />

0<br />

2<br />

-10<br />

3<br />

0<br />

-10<br />

0 1<br />

4<br />

6<br />

(b)<br />

-1<br />

-30 0 30<br />

-30 0 30<br />

10 x=100<br />

5<br />

-30 0 30<br />

Applied bias V (V)<br />

2<br />

Applied bias V (V)<br />

Polarization P3/PS<br />

1<br />

0<br />

0<br />

τ≠0<br />

x=40 10<br />

0<br />

3<br />

-10<br />

-10<br />

-30 0 30<br />

x=300<br />

10<br />

0<br />

6<br />

6 5<br />

-30 0 30<br />

Applied bias V (V)<br />

4<br />

3<br />

(c)<br />

1<br />

2<br />

-1<br />

-30 0 30<br />

Applied bias V (V)<br />

x (nm)<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

Figure 49. (a) Effective piezoelectric response (pm V −1 ) versus applied bias (V) calculated from equation (2) for different distances x 0 from<br />

the doma<strong>in</strong> wall for x = 0, 20, 30, 40, 60, 100, 300 nm (plots 1–6). Dotted curves are static dependences calculated at τ = 0, while solid<br />

curves are k<strong>in</strong>etic loops calculated for τ = 10 −8 s and applied bias frequency f = 500 kHz. (b), (c) Normalized <strong>polarization</strong> P 3 versus<br />

applied bias for τ = 0(b) and τ = 10 −8 s(c) for x = 0, 20, 30, 40, 60, 100, 300 nm (curves 0–6). Effective distance d = 25 nm. Material<br />

parameters for LNO are ε 11 = 84, α =−2 × 10 9 SI units, P S = 0.75Cm −2 . Poisson ratio is ν = 0.3; electrostriction coefficients are<br />

Q 44 = 0.038, Q 12 =−0.003, Q 11 = 0.016 m 4 C −2 ; L ⊥ = 1 nm.<br />

<strong>in</strong> figure 50. A two-layer model for the nanoparticle consist<strong>in</strong>g<br />

of a switchable (<strong>ferroelectric</strong>) layer characterized by the<br />

presence of a built-<strong>in</strong> electric field and a non-switchable (frozen<br />

<strong>polarization</strong>) layer as shown <strong>in</strong> figure 50 was <strong>in</strong>troduced and<br />

relevant parameters were analyzed us<strong>in</strong>g the 1D model, as<br />

described previously [180, 334]. Specifically, the vertical shift<br />

of a hysteresis loop is related to the relative thickness of<br />

the non-switchable <strong>polarization</strong> component and def<strong>in</strong>es the<br />

distribution of the frozen <strong>polarization</strong> with<strong>in</strong> the system, while<br />

the lateral shift of the hysteresis loop def<strong>in</strong>es the built-<strong>in</strong> field<br />

<strong>in</strong> the <strong>ferroelectric</strong> component.<br />

4.4.2. Imag<strong>in</strong>g of multiferroic structures. The role of <strong>in</strong>terfaces<br />

on <strong>ferroelectric</strong> switch<strong>in</strong>g behavior and on multiferroic<br />

coupl<strong>in</strong>g <strong>ferroelectric</strong>–ferromagentic heterostructures [363]<br />

was studied <strong>in</strong> [104]. Topography, PFM and SS-PFM (work of<br />

switch<strong>in</strong>g, PNB and NNB) images for a BFO–CoFe 2 O 4 (CFO)<br />

nanostructure sample are shown <strong>in</strong> figure 51, along with characteristic<br />

loops from the BFO, CFO and BFO–CFO <strong>in</strong>terface<br />

regions. The correspond<strong>in</strong>g bias parameters are def<strong>in</strong>ed <strong>in</strong><br />

figure 51(h). The SS-PFM maps illustrate that coercive and<br />

nucleation biases are uniformly distributed with<strong>in</strong> the <strong>ferroelectric</strong><br />

regions and do not exhibit any systematic trends <strong>in</strong><br />

the vic<strong>in</strong>ity of the <strong>in</strong>terface. While the work of switch<strong>in</strong>g and<br />

the electromechanical response are reduced <strong>in</strong> the vic<strong>in</strong>ity of<br />

the <strong>in</strong>terfaces, analysis of the SS-PFM data shows that this is<br />

a purely geometric effect due to the reduction of the doma<strong>in</strong><br />

volume at the <strong>in</strong>terface [104].<br />

4.4.3. Disorder potential mapp<strong>in</strong>g. The role of defects<br />

as nucleation centers <strong>in</strong> <strong>polarization</strong> reversal is the central<br />

theme of <strong>ferroelectric</strong> switch<strong>in</strong>g models and at the heart of<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!