10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

Activation energy (eV)<br />

Nucleus radius (nm) Nucleus length (nm)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

(a)<br />

Critical radius (nm) Critical length (nm) Critical voltage (V)<br />

10<br />

1<br />

-1 -0.5 0. 0.5 1 -1 -0.5 0. 0.5 1<br />

10 4 10 4<br />

10 3 (b)<br />

(e)<br />

10 3<br />

10 2<br />

10 2<br />

10<br />

10<br />

1<br />

1<br />

-1 -0.5 0. 0.5 1. -1 -0.5 0. 0.5 1.<br />

60<br />

20 (c)<br />

(f)<br />

40<br />

10<br />

20<br />

0<br />

0<br />

-1 -0.5 0. 0.5 1. -1 -0.5 0. 0.5 1.<br />

σ S (P S units)<br />

σ S (P S units)<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

(d)<br />

Figure 33. (a) Activation energy (eV) at U cr and nucleus sizes (b), (c); (d) critical voltage U cr (V), critical doma<strong>in</strong> sizes (nm): length l(U cr )<br />

(e) and radius r(U cr ) (f ) versus surface charge density σ S (<strong>in</strong> P S units). Solid curves correspond to EPCM model of the tip; dotted ones<br />

correspond to the exact series for the sphere–tip <strong>in</strong>teraction energy, dashed curves represent the capacitance approximation. Material<br />

parameters are given <strong>in</strong> caption to figure 31. Reproduced from [317].<br />

3.3.3. Surface screen<strong>in</strong>g effects. Theoretical descriptions<br />

of nanodoma<strong>in</strong> formation <strong>in</strong> the field of a local probe under<br />

ambient conditions should take <strong>in</strong>to consideration the layer<br />

of adsorbed water located below the tip apex [277], and,<br />

more generally, the dynamic and static surface charg<strong>in</strong>g and<br />

screen<strong>in</strong>g phenomena.<br />

The relevance of the specific screen<strong>in</strong>g mechanism on<br />

<strong>polarization</strong> switch<strong>in</strong>g <strong>dynamics</strong> depends on the relationship<br />

between the correspond<strong>in</strong>g relaxation time, τ S , and voltage<br />

pulse time, τ U (i.e. the record<strong>in</strong>g time of the doma<strong>in</strong>). ‘Fast’<br />

screen<strong>in</strong>g mechanisms with τ S τ U significantly affect the<br />

switch<strong>in</strong>g process, whereas the ‘slow’ ones with τ S ≫ τ U<br />

can be ignored. However, these slow mechanisms can<br />

significantly affect the doma<strong>in</strong> stability after switch<strong>in</strong>g by<br />

provid<strong>in</strong>g additional channels for m<strong>in</strong>imiz<strong>in</strong>g de<strong>polarization</strong><br />

energy.<br />

The role of environmental effects and screen<strong>in</strong>g<br />

mechanisms on switch<strong>in</strong>g can be illustrated as follows. Shown<br />

<strong>in</strong> figure 33 are the activation energies for nucleation (a)<br />

and nucleus sizes (b), (c), critical voltage (d) and sizes<br />

(e), (f ) calculated <strong>in</strong> the framework of the sphere–plane<br />

model, the modified po<strong>in</strong>t charge model and the capacitance<br />

approximation under different screen<strong>in</strong>g conditions on the<br />

surface, i.e. σ S values. It is clear from the figure that all<br />

critical parameters rapidly <strong>in</strong>crease under the charge density σ S<br />

<strong>in</strong>crease from −P S to +P S . In particular, the activation barrier<br />

for nucleation at the onset of doma<strong>in</strong> stability (see figure 33(a))<br />

is m<strong>in</strong>imal for complete screen<strong>in</strong>g at σ S = −P S (10 eV)<br />

and <strong>in</strong>creases up to 10 5 eV for σ S → +P S . However, the<br />

barrier height strongly decreases with further voltage <strong>in</strong>crease<br />

U>U cr at all σ S values. Note that the barrier calculated <strong>in</strong> the<br />

<strong>in</strong>homogeneous electric field of the tip is 3–5 orders lower than<br />

the one calculated by Landauer for the homogeneous electric<br />

field. The values obta<strong>in</strong>ed at σ S > −P S are still too high for<br />

thermal fluctuations to cause the doma<strong>in</strong> nucleation at U ≈<br />

U cr . Thus the observed doma<strong>in</strong>s could either orig<strong>in</strong>ate at higher<br />

voltages <strong>in</strong> the perfect <strong>ferroelectric</strong> sample, or nucleation must<br />

be defect-related.<br />

This analysis suggests that environmental effects and<br />

surface states will critically <strong>in</strong>fluence <strong>polarization</strong> switch<strong>in</strong>g<br />

processes <strong>in</strong> PFM. In particular, the dependence of critical<br />

voltage U cr values over ambient conditions (if any) could<br />

clarify the surface screen<strong>in</strong>g <strong>in</strong>fluence. As a recent example,<br />

Terabe et al [318] have demonstrated that values of U cr on<br />

+Z and −Z cuts of LNO or LTO crystals differ by a factor<br />

of 2, illustrat<strong>in</strong>g the effect of the surface state on the switch<strong>in</strong>g<br />

mechanism.<br />

3.3.4. Switch<strong>in</strong>g <strong>in</strong> the presence of defects. In the<br />

mesoscopic models considered above, the defect can affect the<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!