10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

Figure 41. Doma<strong>in</strong> evolution with bias depend<strong>in</strong>g on different p<strong>in</strong>n<strong>in</strong>g strengths of the material. (a) Time dependence of voltage and (b)<br />

schematics of hysteresis loop. (c) Schematics of the doma<strong>in</strong> growth process. In the purely thermo<strong>dynamics</strong> case (dashed arrows), the<br />

doma<strong>in</strong> shr<strong>in</strong>ks with decreas<strong>in</strong>g voltage (path 3–4). To account for realistic loop, the doma<strong>in</strong> size does not change on (3–4) and the doma<strong>in</strong><br />

of opposite polarity nucleates on path (4–6). At po<strong>in</strong>t 6, antiparallel doma<strong>in</strong> walls annihilate. Reproduced from [314]. Copyright 2006,<br />

American Institute of Physics.<br />

Here, the functions w i = 0 <strong>in</strong> the <strong>in</strong>itial and<br />

w i = f i <strong>in</strong> the f<strong>in</strong>al state. The functions f i are<br />

f 1 = (2(1+γ)ν+1)/(1+γ) 2 ,f 2 = −γ 2 /(1+γ) 2 ,f 3 =<br />

−(1+2γ )/(1+γ) 2 and def<strong>in</strong>e the electromechanical response<br />

<strong>in</strong> the <strong>in</strong>itial and f<strong>in</strong>al states of switch<strong>in</strong>g process [184].<br />

Functions w i are dependent on the doma<strong>in</strong> sizes r, l and the<br />

doma<strong>in</strong> shift with respect to the tip apex, and can be reduced<br />

to the <strong>in</strong>tegral representations:<br />

w 3 (γ,r,l,y 0 )<br />

=− 3 ∫ 2π ∫ π/2<br />

dϕ dθ cos 3 R dw (θ,ϕ)<br />

θ s<strong>in</strong> θ<br />

2π 0 0<br />

R G (θ,R dw (θ,ϕ)) , (4.4a)<br />

w 2 (γ,r,l,y 0 )<br />

= 3 ∫ 2π<br />

dϕ<br />

2π<br />

0<br />

∫ π/2<br />

w 1 (γ,r,l,y 0 )= 1<br />

2π<br />

0<br />

( )<br />

γd+cosθRdw (θ,ϕ)<br />

dθ<br />

R G (θ,R dw (θ,ϕ)) −1 cos 2 θ ·s<strong>in</strong> θ,<br />

(4.4b)<br />

∫ 2π ∫ π/2<br />

dϕ dθ ( 3cos 2 θ −2(1+ν) )<br />

0<br />

0<br />

R dw (θ,ϕ)<br />

×cosθ s<strong>in</strong> θ<br />

R G (θ,R dw (θ,ϕ)) ,<br />

(4.4c)<br />

where the function R dw (θ, ϕ)<br />

√<br />

is determ<strong>in</strong>ed by the shape of the<br />

doma<strong>in</strong>, and R G (θ, R dw ) = (γ d +cos θR dw ) 2 +γ 2 s<strong>in</strong> 2 θRdw<br />

2<br />

is related to the probe electrostatic potential <strong>in</strong> the doma<strong>in</strong> wall<br />

po<strong>in</strong>t determ<strong>in</strong>ed by R dw (θ, ϕ). Note that equations (4.4a)–<br />

(4.4c) can be extended to arbitrary rotationally <strong>in</strong>variant<br />

doma<strong>in</strong> geometries, e.g. cyl<strong>in</strong>drical or conic, as determ<strong>in</strong>ed by<br />

the functional form of R dw (θ, ϕ). For <strong>in</strong>stance, the ellipsoidal<br />

doma<strong>in</strong> wall shape corresponds to<br />

rl<br />

R dw (θ) = √<br />

, (4.5a)<br />

r 2 cos 2 θ + l 2 s<strong>in</strong> 2 θ<br />

while for the case of prolate semiellipsoid (r ≪ l) or cyl<strong>in</strong>der,<br />

shifted on distance y 0 we derived at |y 0 |

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!