10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

Response, a.u.<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-1.5<br />

-2.0<br />

(a)<br />

Switchable <strong>polarization</strong>, a.u.<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-40 -20 0 20 40<br />

0 10 20 30 40 50<br />

Bias, V dc<br />

(b)<br />

Bias w<strong>in</strong>dow, V dc<br />

Nucleation bias, V<br />

(c)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 10 20 30 40 50<br />

Bias w<strong>in</strong>dow, V dc<br />

Work of switch<strong>in</strong>g, a.u.<br />

(d)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 10 20 30 40 50<br />

Bias w<strong>in</strong>dow, Vdc<br />

Figure 39. (a) Evolution of PFM hysteresis loops on an epitaxial PZT film as a function of bias. (b) Bias w<strong>in</strong>dow dependence of switchable<br />

<strong>polarization</strong>. (c) Bias dependence of () positive and () negative nucleation bias. (d) Bias w<strong>in</strong>dow dependence of effective work of<br />

switch<strong>in</strong>g. Shown <strong>in</strong> (b) and (d) are values determ<strong>in</strong>ed from the functional fit ( ) and by direct <strong>in</strong>tegration of the area below the loop (⊓⊔).<br />

Repr<strong>in</strong>ted from [329]. Copyright 2006, American Institute of Physics.<br />

Response, a.u.<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

-1.0<br />

-10 -5 0 5 10<br />

(a)<br />

Bias, V dc<br />

Response, a.u.<br />

(b)<br />

0.00<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

-10 -5 0 0<br />

Bias, V dc<br />

Figure 40. The effect of ambient conditions on the hysteresis loop shape. (a) Hysteresis loops for a clean <strong>in</strong>sult<strong>in</strong>g STO surface.<br />

(b) Hysteresis loop for conductive SrRuO 3 /STO th<strong>in</strong> film. Repr<strong>in</strong>ted from [329]. Copyright 2006, American Institute of Physics.<br />

this behavior to the electrocapillary condensation of water<br />

layers at the tip–surface junction [330, 331], result<strong>in</strong>g <strong>in</strong><br />

an ‘unsaturated’ electromechanical hysteresis loop. For<br />

comparison, figure 40(b) shows hysteresis loops obta<strong>in</strong>ed<br />

on a conductive SrRuO 3 /STO surface. This surface is<br />

extremely stable <strong>in</strong> air and conductive (i.e. low energy electron<br />

diffraction pattern can be observed after air exposure) [332]<br />

and no hysteresis loops are measured, thus confirm<strong>in</strong>g that<br />

the behavior observed on the STO (1 0 0) surface is not<br />

an <strong>in</strong>strumental artifact. While this observation is not<br />

necessarily universal, it does illustrate that spurious hysteretic<br />

contributions to electromechanical measurements can exist<br />

when operat<strong>in</strong>g under ambient conditions.<br />

4.2. Phenomenological theory of doma<strong>in</strong> loop formation<br />

The progress <strong>in</strong> experimental methods has stimulated parallel<br />

development of theoretical models to relate PFM hysteresis<br />

loop parameters and <strong>materials</strong> properties. A number of such<br />

models are based on the <strong>in</strong>terpretation of phenomenological<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!