10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

10 3 l<br />

l<br />

r<br />

∆l<br />

(a) LNO<br />

Doma<strong>in</strong>s sizes (nm)<br />

10 2<br />

10<br />

10 3 l l<br />

10 2<br />

r<br />

10<br />

∆l<br />

(b) LTO<br />

1<br />

1 10 10 2 10 3 10 4<br />

Applied bias V (V)<br />

1<br />

1 10 10 2 10 3 10 4<br />

Applied bias V (V)<br />

Doma<strong>in</strong>s sizes (nm)<br />

10 2<br />

10<br />

1<br />

10 3 l<br />

l<br />

r<br />

(c) PTO<br />

∆l<br />

1 10 10 2 10 3 10 4<br />

Applied bias V (V)<br />

10 3 l l<br />

r<br />

10 2<br />

10 ∆l<br />

(d) PZT<br />

1<br />

1 10 10 2 10 3<br />

Applied bias V (V)<br />

Figure 45. Doma<strong>in</strong> length l(V ) and radius r(V) bias dependence calculated with<strong>in</strong> the LGD approach for typical <strong>ferroelectric</strong> <strong>materials</strong>:<br />

LNO (LiNbO 3 with ε 11 = 84, ε 33 = 30, α =−1.95 × 10 9 mF −1 , β = 3.61 × 10 9 m 5 C −2 F −1 , P S = 0.73Cm −2 ); LTO (LiTaO 3 with<br />

ε 11 = 54, ε 33 = 44, α =−1.31 × 10 9 mF −1 , β = 5.04 × 10 9 m 5 C −2 F −1 , P S = 0.51Cm −2 ); PTO (PbTiO 3 with ε 11 = 124, ε 33 = 67,<br />

α =−3.42 × 10 8 mF −1 , β =−2.90 × 10 8 m 5 C −2 F −1 , δ = 1.56 × 10 9 m 5 C −2 F −1 , P S = 0.75Cm −2 ); PZT (PbZr 40 Ti 60 O 3 with ε 11 = 497,<br />

ε 33 = 197, α =−1.66 × 10 8 mF −1 , β = 1.44 × 10 8 m 5 C −2 F −1 , δ = 1.14 × 10 9 m 5 C −2 F −1 , P S = 0.57Cm −2 ). Effective distance<br />

d = 25 nm, ε b 33 5, L ⊥ = 1 nm, sample thickness h →∞. Solid curves are calculated case iii, dotted curves correspond to case ii, dashed<br />

curves correspond to case i. Reproduced from [351].<br />

sample is dielectrically isotropic <strong>in</strong> transverse directions, i.e.<br />

permittivities ε 11 = ε 22 , while ε 33 may be different. The<br />

dependence of <strong>in</strong>-plane <strong>polarization</strong> components on electric<br />

field is l<strong>in</strong>earized as P 1,2 ≈−ε 0 (ε 11 − 1)∂ϕ(r)/∂x 1,2 . The<br />

conventional relation between piezoelectric coefficients d ij k =<br />

2ε 0 ε il Q jklm P m <strong>in</strong> Voigt notation acquires the explicit forms<br />

d 33 = 2ε 0 ε 33 Q 11 P 3 , d 31 = 2ε 0 ε 33 Q 12 P 3 , d 15 = 2ε 0 ε 11 Q 44 P 3 ,<br />

where Q ij are the electrostriction tensor components <strong>in</strong> Voigt<br />

notation and ε 0 is the universal dielectric constant.<br />

The problem for quasi-static electrostatic potential ϕ(r)<br />

follows from the Maxwell equations, namely<br />

⎧<br />

⎨<br />

ε b ∂ 2 (<br />

ϕ ∂ 2 )<br />

33<br />

⎩<br />

∂z + ε ϕ<br />

2 11<br />

∂x + ∂2 ϕ<br />

= 1 ∂P 3<br />

2 ∂y 2 ε 0 ∂z ,<br />

(4.7)<br />

ϕ (x,y,z = 0) = V e (x,y) , ϕ(x,y,z →∞) = 0.<br />

Here we <strong>in</strong>troduced dielectric permittivity of the background<br />

or reference state [353] asε33 b . Typically εb 33<br />

10; its orig<strong>in</strong><br />

can be related to electronic polarizability and/or reorientation<br />

of impurity dipoles.<br />

Potential distribution produced by the SPM probe<br />

on the surface can be approximated as V e (x, y) ≈<br />

Vd/ √ x 2 + y 2 + d 2 , where V is the applied bias, d is<br />

the effective distance determ<strong>in</strong>ed by the probe geometry<br />

[314, 320]. The potential is normalized assum<strong>in</strong>g the<br />

condition of perfect electrical contact with the surface,<br />

V e (0, 0) ≈ V . In the case of the local po<strong>in</strong>t charge<br />

model, the probe is represented by a s<strong>in</strong>gle charge Q =<br />

2πε 0 ε e R 0 V(κ+ ε e )/κ located at distance d = ε e R 0 /κ for<br />

a spherical tip apex with curvature R 0 (κ ≈ √ ε 33 ε 11 is the<br />

effective dielectric constant determ<strong>in</strong>ed by the ‘full’ dielectric<br />

permittivity ε 33 <strong>in</strong> the z-direction, ε e is the ambient dielectric<br />

constant), or d = 2R 0 /π for a flattened tip represented by a<br />

disk of radius R 0 <strong>in</strong> contact with the sample surface.<br />

In the framework of LGD phenomenology, the spatial–<br />

temporal evolution of the <strong>polarization</strong> component P 3 of<br />

the second order <strong>ferroelectric</strong> is described by the Landau–<br />

Khalatnikov equation:<br />

− τ d (<br />

dt P 3 = αP 3 + βP3 3 − ξ ∂2 P 3 ∂ 2 )<br />

∂z − η P 3<br />

2 ∂x + ∂2 P 3<br />

− E 2 ∂y 2 3 ,<br />

(4.8)<br />

where ξ>0 and η>0 are the gradient terms, the expansion<br />

coefficient, β > 0, for the second order phase transitions<br />

considered hereafter and τ is the Khalatnikov coefficient<br />

(relaxation time). In the absence of (microscopic) p<strong>in</strong>n<strong>in</strong>g<br />

centers or for weak p<strong>in</strong>n<strong>in</strong>g of viscous friction type the doma<strong>in</strong><br />

wall equilibrium profile can be found as the stationary solution<br />

of equation (4.8). Rigorously, the coefficient α should be<br />

taken as renormalized by the elastic stress as (α − 2Q ij 33 σ ij )<br />

[354, 355]. Hereafter we neglect the striction effects, which are<br />

relatively small for <strong>ferroelectric</strong>s such as LTO and LNO [356].<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!