10.10.2014 Views

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

Local polarization dynamics in ferroelectric materials

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Rep. Prog. Phys. 73 (2010) 056502<br />

S V Kal<strong>in</strong><strong>in</strong> et al<br />

(a)<br />

d 3<br />

Q 1<br />

Q 2<br />

Q 3<br />

V Q<br />

(b)<br />

(c)<br />

0.8 µm<br />

Piezoresponse, a.u.<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

(d)<br />

s<strong>in</strong>gle data set<br />

one charge model<br />

0 1000 2000 3000 4000 5000<br />

Distance, nm<br />

Figure 19. (a) Representation of a realistic tip by a set of image charges. (b) Surface topography and (c) PFM image of doma<strong>in</strong> wall <strong>in</strong><br />

LNO. (d) Fit of the extrapolated data set with equal weight<strong>in</strong>g for all po<strong>in</strong>ts. Reproduced from [218]. Copyright 2007, American Institute of<br />

Physics.<br />

Table 2. Effective image charge parameters for different <strong>ferroelectric</strong>s.<br />

Wall R 0 for R 0 for<br />

Material width (nm) Q d (nm) R d (nm) ε e = 1(µm) ε e = 80 (nm)<br />

LiNbO 3 96 1000 92 58.6 4.8 60<br />

Epitaxial PZT 107 2550 125 79.6 5 62.5<br />

PZT <strong>in</strong> air 58 723 86.5 55.1 44 541<br />

PZT <strong>in</strong> liquid 6 104 11.8 7.5 75<br />

charges can be deconvoluted from the experimental doma<strong>in</strong><br />

wall profile by m<strong>in</strong>imiz<strong>in</strong>g the functional<br />

∫ ( 1<br />

F [u 3 ] = PR(a) −<br />

2πε 0 (ε e + κ)<br />

N∑<br />

m=0<br />

) 2<br />

Q m<br />

ũ 3 (s m ) da<br />

d m<br />

(2.29)<br />

with respect to the number, N, magnitude and charge–surface<br />

separation of a set of image charges {Q i ,d i } N represent<strong>in</strong>g the<br />

tip. Here PR(a) is the measured piezoresponse and <strong>in</strong>tegration<br />

is performed over all available a values. The dielectric constant<br />

of the medium can be fixed to the value of free air (ε e = 1)<br />

or water <strong>in</strong> the tip–surface junction or imag<strong>in</strong>g <strong>in</strong> liquid<br />

(ε e = 80). The output of the fitt<strong>in</strong>g process is the set of reduced<br />

charges q i = Q i /2πε 0 and the charge surface separation, d i .<br />

Note that the charges and the dielectric constants cannot be<br />

determ<strong>in</strong>ed <strong>in</strong>dependently, s<strong>in</strong>ce only Q m /(ε e + κ)ratios enter<br />

equation (2.29).<br />

Shown <strong>in</strong> figures 19(b)–(d) is an example of a doma<strong>in</strong><br />

wall profile and the correspond<strong>in</strong>g fit by equation (2.29) with<br />

N = 1 for LNO. The correspond<strong>in</strong>g image charge parameters<br />

are summarized <strong>in</strong> table 2. To improve the fit quality, more<br />

complex fitt<strong>in</strong>g functions with N = 2 and N = 3 were<br />

attempted. However, <strong>in</strong>dependent of the choice of the <strong>in</strong>itial<br />

values of the image charge, the fit converged to a s<strong>in</strong>gle image<br />

charge, i.e. d i = d and ∑ Q i = Q. Similar behavior was<br />

observed for other doma<strong>in</strong> walls.<br />

This analysis suggests that the electrostatic field produced<br />

by the tip is consistent with a s<strong>in</strong>gle po<strong>in</strong>t charge positioned<br />

at large separation from the surface, contrary to the behavior<br />

anticipated <strong>in</strong> contact mode imag<strong>in</strong>g. The analysis was<br />

extended to the case of the sphere–plane (radius of curvature<br />

R 0 ) and disk–plane (radius R d ) models. The sphere<br />

parameters are calculated both from ambient and water<br />

environment to account for possible capillary condensation<br />

effects. From the data, it is clear that the use of the<br />

sphere/air model leads to implausibly large radii. Hence,<br />

experimental data are consistent either with the presence of<br />

a capillary water film <strong>in</strong> the sphere model, or conductive<br />

disk model [218].<br />

2.4.2. Resolution for non-zero contact area. Extensive<br />

quantitative analysis of doma<strong>in</strong> wall width, tak<strong>in</strong>g <strong>in</strong>to account<br />

the f<strong>in</strong>ite contact tip–surface contact area, was reported by<br />

the Gopalan group [183]. The geometric structure of more<br />

than 100 SPM tips was ascerta<strong>in</strong>ed us<strong>in</strong>g scann<strong>in</strong>g electron<br />

microscopy to yield effective tip sizes [212], see figures 20(a)<br />

and (b). The doma<strong>in</strong> wall width <strong>in</strong> periodically poled lithium<br />

niobate was measured as a function of tip radius. In parallel,<br />

the doma<strong>in</strong> wall width was calculated us<strong>in</strong>g a numerical f<strong>in</strong>ite<br />

element analysis package, figure 20.<br />

The comparison of the experimentally measured PFM<br />

signal and doma<strong>in</strong> wall width as a function of tip radius<br />

with numerical and analytical theory predictions is shown <strong>in</strong><br />

figure 21. The data clearly suggest that the PFM signal is<br />

<strong>in</strong>dependent of contact area, <strong>in</strong> agreement with the theory<br />

of Karapetian [175, 176]. At the same time, the doma<strong>in</strong><br />

wall width saturates at ∼100 nm, correspond<strong>in</strong>g to a tip<strong>in</strong>dependent<br />

doma<strong>in</strong> wall width. This can be attributed both<br />

to the effect of an ambient environment on imag<strong>in</strong>g, and to<br />

wall broaden<strong>in</strong>g, necessitat<strong>in</strong>g further studies <strong>in</strong> an ultra-high<br />

vacuum environment.<br />

21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!