27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DIOCLES 201<br />

unless we have a fragment <strong>from</strong> it in the Fragmentum<br />

mathematicum Bobieme. But Moslem writers regarded Diocles<br />

as the discoverer <strong>of</strong> the parabolic burning-mirror; 'the ancients',<br />

says al Singari (Sachawi, Ansarl), made mirrors <strong>of</strong> plane<br />

'<br />

surfaces. Some made them concave (i.e. spherical) until<br />

Diocles (Diiiklis) showed and proved that, if the surface <strong>of</strong><br />

these mirrors has its curvature in the form <strong>of</strong> a parabola, they<br />

then have the greatest power and burn most strongly. There<br />

is a work on this subject composed <strong>by</strong> Ibn al-Haitham.' This<br />

work survives in Arabic and in Latin translations, and is<br />

reproduced <strong>by</strong> Heiberg and Wiedemann 1 ; it does not, however,<br />

mention the name <strong>of</strong> Diocles, but only those <strong>of</strong> Archimedes<br />

and Anthemius. Ibn al-Haitham says that famous<br />

men like Archimedes and Anthemius had used mirrors made<br />

up <strong>of</strong> a number <strong>of</strong> spherical rings ; afterwards, he adds, they<br />

considered the form <strong>of</strong> curves which would reflect rays <strong>to</strong> one<br />

point, and found that the concave surface <strong>of</strong><br />

a paraboloid <strong>of</strong><br />

revolution has this property. It is curious <strong>to</strong> find Ibn al-<br />

Haitham saying that the ancients had not set out the pro<strong>of</strong>s<br />

sufficiently, nor the method <strong>by</strong> which they discovered them,<br />

words which almost exactly recall those <strong>of</strong> Anthemius himself.<br />

Nevertheless the whole course <strong>of</strong> Ibn al-Haitham' s pro<strong>of</strong>s is<br />

on the <strong>Greek</strong> model, Apollonius being actually quoted <strong>by</strong> name<br />

in the pro<strong>of</strong> <strong>of</strong> the main property <strong>of</strong> the parabola required,<br />

namely that the tangent at any point <strong>of</strong> the curve makes<br />

equal angles with the focal distance <strong>of</strong> the point and the<br />

straight line drawn through it parallel <strong>to</strong> the axis. A pro<strong>of</strong><br />

<strong>of</strong> the property actually survives in the <strong>Greek</strong> Fragmentum<br />

mathematicum Bobiense, which evidently came <strong>from</strong> some<br />

treatise on the parabolic burning-mirror ; but Ibn al-Haitham<br />

does not seem <strong>to</strong> have had even this fragment at his disposal,<br />

since his pro<strong>of</strong> takes a different course, distinguishing three<br />

different cases, reducing the property <strong>by</strong> analysis <strong>to</strong> the<br />

known property AN = AT, and then working out the synthesis.<br />

The pro<strong>of</strong> in the Fragmentum is worth giving. It is<br />

substantially as follows, beginning with the preliminary lemma<br />

that, if the tangent at any point P, meets the axis at T FT} x<br />

and if AS be measured along the axis <strong>from</strong> the vertex A<br />

equal <strong>to</strong> \AL where AL is the parameter, then SF = ST<br />

y<br />

1<br />

Bibliotheca mathematica, x 3 , 1910, pp. 201-37*<br />

202 SUCCESSORS OF -THE GREAT GEOMETERS<br />

Let PN be the ordinate <strong>from</strong> P ;<br />

<strong>to</strong> the axis meeting PT in Y, and join SY.<br />

Now<br />

But PlY = 2AY (since JJV= JT)<br />

therefore A Y 2 = TA .<br />

draw A Y at right angles<br />

PN*=AL.AN<br />

= 4 AS. AN<br />

= 4AS.AT (since A# = AT).<br />

AS,<br />

and the angle TYS is right.<br />

The triangles SYT, SYP being right-angled, and TY being<br />

equal <strong>to</strong> YP, it follows that SP = ST.<br />

With the same figure, let BP be a ray parallel <strong>to</strong> AN<br />

impinging on the curve at P. It is required <strong>to</strong> prove that<br />

the angles <strong>of</strong> incidence and reflection (<strong>to</strong> S) are equal.<br />

We have SP = ST, so that the angles at the points T, P<br />

'<br />

are equal. So ', says the author, ' are the angles TPA, KPR<br />

[the angles between the tangent and the curve on each side <strong>of</strong><br />

the point <strong>of</strong> contact]. Let the difference between the angles<br />

be taken ; therefore the angles SPA, RPB which remain<br />

[again mixed ' ' angles] are equal. Similarly we shall show<br />

that all the lines drawn parallel <strong>to</strong> .4$ will be reflected at<br />

equal angles <strong>to</strong> the point S.'<br />

The author then proceeds :<br />

'<br />

Thus burning-mirrors constructed<br />

with the surface <strong>of</strong> impact (in the form) <strong>of</strong> the<br />

section <strong>of</strong> a right-angled cone may easily, in the manner

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!