27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

To prove (1)<br />

R'l 2 : IW-H'Q 2 : QH<br />

THE CONICS, BOOK <strong>II</strong>I 155<br />

we have<br />

= 2 AH'F'Q :<br />

AHFQ<br />

= H'TU'R' :<br />

Also R'T 2 : TR = 2 R'U' 2 : UR = AR'U'W 2 :<br />

and jRT a : Ti? 2 = TW 2 : TW = ATH'W 2 :<br />

HTUR<br />

(<strong>II</strong>I. 2, 3, &c).<br />

A220TT,<br />

A TWIT,<br />

so that R'T 2 :TR 2 = ATH'W' - AE'CHF: ATi^TF- A-RETTF<br />

= H'TU'R':HTUR<br />

= R'l 2 : i7? 2 , <strong>from</strong> above.<br />

To prove (2) we have<br />

RV 2 : 7iT 2 = RU 2 : R'U' 2 = ARUW: AR'U'W,<br />

and also<br />

= HQ 2 : QH' = AHFQ 2 :<br />

AH'F'Q<br />

= HTUR * :<br />

H'TU'R',<br />

so that<br />

RV 2 : VR' 2 = HTUR + ARUWiH'TU'R' + AR'U'W<br />

= ATHWiATHW<br />

= TF 2 : TIP<br />

= RO 2 : OR'<br />

2<br />

2 .<br />

Props. <strong>II</strong>I. 30-6 deal separately with the particular cases<br />

in which (a) the transversal is parallel <strong>to</strong> an asymp<strong>to</strong>te <strong>of</strong> the<br />

hyperbola or (6) the chord <strong>of</strong> contact is parallel <strong>to</strong> an asymp<strong>to</strong>te,<br />

i.e. where one <strong>of</strong> the tangents is an asymp<strong>to</strong>te, which is<br />

the tangent at infinity.<br />

Next we have propositions about intercepts made <strong>by</strong> two<br />

tangents on a third : If the tangents at three points <strong>of</strong> a<br />

parabola form a triangle, all three tangents will be cut <strong>by</strong> the<br />

points <strong>of</strong> contact in the same proportion (<strong>II</strong>I. 41) ;<br />

if the tangents<br />

at the extremities <strong>of</strong> a diameter PP' <strong>of</strong> a central conic<br />

are cut in r, r' <strong>by</strong> any other tangent, Pr . P'r' = CD 2 (<strong>II</strong>I. 42)<br />

if<br />

the tangents at P, Q <strong>to</strong> a hyperbola meet the asymp<strong>to</strong>tes in<br />

* Where a quadrilateral, as HTUR in the figure, is a cross-quadrilateral,<br />

the area is <strong>of</strong> course the difference between the two triangles<br />

which it forms, as HTW ^ RUW.<br />

156 APOLLONIUS Ot PERGA<br />

L, 1/ and M, M' respectively, then L'M, LM' are both parallel<br />

<strong>to</strong> PQ (<strong>II</strong>I. 44).<br />

The first <strong>of</strong> these propositions asserts that, if the tangents at<br />

three points P, Q, R <strong>of</strong> a parabola form a triangle pqr, then<br />

Pr :rq = tQ: Qp = qp :pR.<br />

From this property it is easy <strong>to</strong> deduce the Cartesian<br />

equation <strong>of</strong> a parabola referred <strong>to</strong> two fixed tangents as<br />

coordinate axes. Taking qR, qP as fixed coordinate axes, we<br />

find the locus <strong>of</strong> Q thus. Let x, y be the coordinates <strong>of</strong> Q.<br />

Then, if qp = x Y ,<br />

qr = yv qR — h, qP — k, we have<br />

s „ rQ == VvzV „ k -Vi = x i<br />

x x<br />

-x ~ Qp y 2/1<br />

h-x x<br />

'<br />

From these equations we derive<br />

x x<br />

— hx, y* — ky ;<br />

also, since — = ^x a we have f-<br />

—<br />

x<br />

2/i-2/<br />

x i 2/i<br />

= 1.<br />

By substituting for x 1} y x<br />

the values V(hx), V(ky) we<br />

obtain<br />

©'+©'-•<br />

The focal properties <strong>of</strong> central conies are proved in<br />

<strong>II</strong>I. 45-52 without any reference <strong>to</strong> the directrix ; there is<br />

no mention <strong>of</strong> the focus <strong>of</strong> a parabola. The foci are called<br />

'<br />

the points arising out <strong>of</strong> the application ' (ra e/c rrjs irapafio\r)s<br />

ytuo/xeua arj/ieTa), the meaning being that 8, S' are taken<br />

on the axis AA' such that AS.SA' = AS'.S'A' = \pa .AA'<br />

or CB 2 , that is, in the phraseology <strong>of</strong> application <strong>of</strong> areas,<br />

a rectangle is applied <strong>to</strong> A A' as base equal <strong>to</strong> one-fourth<br />

part <strong>of</strong> the ' figure ', and in the case <strong>of</strong> the hyperbola exceeding,<br />

but in the case <strong>of</strong> the ellipse falling short, <strong>by</strong> a<br />

square figure. The foci being thus found, it is proved that,<br />

if the tangents At, A'r' at the extremities <strong>of</strong> the axis are met<br />

<strong>by</strong> the tangent at any point P in r, v' respectively, rr' subtends<br />

a right angle at S, S', and the angles rr'S, A'r'S' are equal, as<br />

also are the angles rV/S", ArS (<strong>II</strong>I. 45, 46). It is next shown<br />

that, if be the intersection <strong>of</strong> r>S r/ , r'S, then OP is perpendicular<br />

<strong>to</strong> the tangent at P (<strong>II</strong>I. 47).<br />

These propositions are

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!