27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ON THE SPHERE AND CYLINDER, I 35<br />

tively), this was not the order <strong>of</strong> their discovery ; for Archimedes<br />

tells us in The Method that<br />

'<br />

<strong>from</strong> the theorem that a sphere is four times as great as the<br />

cone with a great circle <strong>of</strong> the sphere as base and with height<br />

equal <strong>to</strong> the radius <strong>of</strong> the sphere I conceived the notion that<br />

the surface <strong>of</strong> any sphere is four times as great as a great<br />

circle in it ; for, judging <strong>from</strong> the fact that any circle is equal<br />

<strong>to</strong> a triangle with base equal <strong>to</strong> the circumference and height<br />

equal <strong>to</strong> the radius <strong>of</strong> the circle, I apprehended that, in like<br />

manner, any sphere is equal <strong>to</strong> a cone with base equal <strong>to</strong> the<br />

surface <strong>of</strong> the sphere and height equal <strong>to</strong> the radius '.<br />

Book I begins with definitions (<strong>of</strong> ' concave in the same<br />

direction as applied '<br />

<strong>to</strong> curves or broken lines and surfaces, <strong>of</strong><br />

a ' solid sec<strong>to</strong>r ' and a ' solid rhombus ') followed <strong>by</strong> five<br />

Assumptions, all <strong>of</strong> importance. Of all lines ivhich have the<br />

same extremities the straight line is the least, and, if there are<br />

two curved or bent lines in a plane having the same extremities<br />

and concave in the same direction, but one is wholly<br />

included <strong>by</strong>, or partly included <strong>by</strong> and partly common with,<br />

the other, then that which is included is the lesser <strong>of</strong> the two.<br />

Similarly with plane surfaces and surfaces concave in the<br />

'<br />

same direction. Lastly, Assumption 5 is the famous Axiom<br />

<strong>of</strong> Archimedes ', which however was, according <strong>to</strong> Archimedes<br />

himself, used <strong>by</strong> earlier geometers (Eudoxus in particular), <strong>to</strong><br />

the effect that Of unequal magnitudes the greater exceeds<br />

the less <strong>by</strong> such a magnitude as, when added <strong>to</strong> itself, can be<br />

made <strong>to</strong> exceed any assigned magnitude <strong>of</strong> the same kind<br />

;<br />

the axiom is <strong>of</strong> course practically equivalent <strong>to</strong> Eucl. V, Def. 4,<br />

and is closely connected with the theorem <strong>of</strong> Eucl. X. 1.<br />

As, in applying the method <strong>of</strong> exhaustion, Archimedes uses<br />

both circumscribed and inscribed figures with a view <strong>to</strong> compressing<br />

them in<strong>to</strong> coalescence with the curvilinear figure <strong>to</strong><br />

be measured, he has <strong>to</strong> begin with propositions showing that,<br />

given two unequal magnitudes, then, however near the ratio<br />

<strong>of</strong> the greater <strong>to</strong> the less is <strong>to</strong> 1, it is possible <strong>to</strong> find two<br />

straight lines such that the greater is <strong>to</strong> the less in a still less<br />

ratio ( > 1), and <strong>to</strong> circumscribe and inscribe similar polygons <strong>to</strong><br />

a circle or sec<strong>to</strong>r such that the perimeter or the area <strong>of</strong> the<br />

circumscribed polygon is <strong>to</strong> that <strong>of</strong> the inner in a ratio less<br />

than the given ratio (Props. 2-6): also, just as Euclid proves<br />

D 2<br />

36 ARCHIMEDES<br />

that, if we continually double the number <strong>of</strong> the sides <strong>of</strong> the<br />

regular polygon inscribed in a circle, segments will ultimately be<br />

left which are <strong>to</strong>gether less than any assigned area, Archimedes<br />

has <strong>to</strong> supplement this (Prop. 6) <strong>by</strong> proving that, if we increase<br />

the number <strong>of</strong> the sides <strong>of</strong> a circumscribed regular polygon<br />

sufficiently, we can make the excess <strong>of</strong> the area <strong>of</strong> the polygon<br />

over that <strong>of</strong> the circle less than any given area. Archimedes<br />

then addresses himself <strong>to</strong> the problems <strong>of</strong> finding the surface <strong>of</strong><br />

any right cone or cylinder, problems finally solved in Props. 1<br />

(the cylinder) and 14 (the cone).<br />

Circumscribing and inscribing<br />

regular polygons <strong>to</strong> the bases <strong>of</strong> the cone and cylinder, he<br />

erects pyramids and prisms respectively on the polygons as<br />

bases and circumscribed or inscribed <strong>to</strong> the cone and cylinder<br />

respectively. In Props. 7 and 8 he finds the surface <strong>of</strong> the<br />

pyramids inscribed and circumscribed <strong>to</strong> the cone, and in<br />

Props. 9 and 10 he proves that the surfaces <strong>of</strong> the inscribed<br />

and circumscribed pyramids respectively (excluding the base)<br />

are less and greater than the surface <strong>of</strong> the cone (excluding<br />

the base). Props. 11 and 12 prove the same thing <strong>of</strong> the<br />

prisms inscribed and circumscribed <strong>to</strong> the cylinder, and finally<br />

Props. 13 and 14 prove, <strong>by</strong> the method <strong>of</strong> exhaustion, that the<br />

surface <strong>of</strong> the cone or cylinder (excluding the bases) is equal<br />

<strong>to</strong> the circle the radius <strong>of</strong> which is a mean proportional<br />

between the ' side ' (i. e. genera<strong>to</strong>r) <strong>of</strong> the cone or cylinder and<br />

the radius or diameter <strong>of</strong> the base (i.e. is equal <strong>to</strong> wrs in the<br />

case <strong>of</strong> the cone and 2irrs in the case <strong>of</strong> the cylinder, where<br />

r is the radius <strong>of</strong> the base and s a genera<strong>to</strong>r). As Archimedes<br />

here applies the method <strong>of</strong> exhaustion for the first time, we<br />

will illustrate <strong>by</strong> the case <strong>of</strong> the cone (Prop. 14). .<br />

Let A be the base <strong>of</strong><br />

c<br />

E<br />

the cone, C a straight line equal <strong>to</strong> its<br />

radius, D a line equal <strong>to</strong> a genera<strong>to</strong>r <strong>of</strong> the cone, E a mean<br />

proportional <strong>to</strong> G, D, and B a circle with radius equal <strong>to</strong> E.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!