27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON CONTACTS OR TANGENCIES 185<br />

given circles be a, b, c and their centres A, B, C. Let D, E, F<br />

be the external centres <strong>of</strong> similitude so that BD : DC— b : c, &c.<br />

Suppose the problem solved, and let P, Q, R be the points<br />

<strong>of</strong> contact. Let PQ produced meet the circles with centres<br />

A, B again in K, L. Then, <strong>by</strong> the proposition (1) above, the<br />

segments KGP, QHL are both similar <strong>to</strong> the segment PYQ<br />

;<br />

therefore they are similar <strong>to</strong> one another.<br />

It follows that PQ<br />

produced beyond L passes through F. Similarly QR, PR<br />

produced pass respectively through D, E.<br />

Let PE, QD meet the circle with centre C again in M, N.<br />

Then, the segments PQR, RNM being similar, the angles<br />

PQR, RNM are equal, and therefore MN is parallel <strong>to</strong> PQ.<br />

Produce NM <strong>to</strong> meet EF in V.<br />

Then<br />

EV:EF = EM: EP = EC:EA = c:a;<br />

therefore the point V is given.<br />

Accordingly the problem reduces itself <strong>to</strong> this :<br />

Given three<br />

points V, E, D in a straight line, it is required <strong>to</strong> draw DR, ER<br />

<strong>to</strong> a point R on the circle with centre C so that, if DR, ER meet<br />

the circle again in N, M, NM produced shall pass through V.<br />

This is the problem <strong>of</strong> Pappus just solved.<br />

Thus R is found, and DR, ER produced meet the circles<br />

with centres B and A in the other required points Q, P<br />

respectively.<br />

(e) Plane loci, two Books.<br />

Pappus gives a pretty full account <strong>of</strong> the contents <strong>of</strong> this<br />

work, which has sufficed <strong>to</strong> enable res<strong>to</strong>rations <strong>of</strong> it <strong>to</strong><br />

be made <strong>by</strong> three distinguished geometers, Fermat, van<br />

Schooten, and (most completely) <strong>by</strong> Robert Simson. Pappus<br />

prefaces his account <strong>by</strong> a classification <strong>of</strong> loci on two<br />

different plans. Under the first classification loci are <strong>of</strong> three<br />

kinds: (1) efeKTiKoi, holding-in or fixed; in this case the<br />

locus <strong>of</strong> a point is a point, <strong>of</strong> a line a line, and <strong>of</strong> a solid<br />

a solid,<br />

where presumably the line or solid can only move on<br />

itself so that it does not change its position: (2) Siego-<br />

Slkol, pasdng-along : this is the ordinary sense <strong>of</strong> a locus,<br />

where the locus <strong>of</strong> a point is a line, and <strong>of</strong> a line a solid:<br />

(3) dvao-Tpo(f)iKoi, moving backvjards and forwards, as it were,<br />

in which sense a plane may be the locus <strong>of</strong> a point and a solid<br />

186 AP0LL0N1US OF PERGA<br />

<strong>of</strong> a line. 1<br />

The second classification is the familiar division in<strong>to</strong><br />

'plane, solid, and linear loci, plane loci being straight lines<br />

and circles only, solid loci conic sections only, and linear loci<br />

those which are not straight lines nor circles nor any <strong>of</strong> the<br />

conic sections. The loci dealt with in our treatise are accordingly<br />

all straight lines or circles. The pro<strong>of</strong> <strong>of</strong> the propositions<br />

is <strong>of</strong> course enormously facilitated <strong>by</strong> the use <strong>of</strong><br />

Cartesian coordinates, and many <strong>of</strong> the loci are really the<br />

geometrical equivalent <strong>of</strong> fundamental theorems in analytical<br />

or algebraical geometry. Pappus begins with a composite<br />

enunciation, including a number <strong>of</strong> propositions, in these<br />

terms, which, though apparently confused, are not difficult<br />

<strong>to</strong> follow out:<br />

4ft<br />

If two straight lines be drawn, <strong>from</strong> one given point or <strong>from</strong><br />

1<br />

two, which are (a) in a straight line or (b) parallel or<br />

(c) include a given angle, and either (a) bear a given ratio <strong>to</strong><br />

one another or (/?) contain a given rectangle, then, if the locus<br />

<strong>of</strong> the extremity <strong>of</strong> one <strong>of</strong> the lines is a plane locus given in<br />

position, the locus <strong>of</strong> the extremity <strong>of</strong> the other will also be a<br />

plane locus given in position, which will sometimes be <strong>of</strong> the<br />

same kind as the former, sometimes <strong>of</strong> the other kind, and<br />

will sometimes be similarly situated with reference <strong>to</strong> the<br />

straight line, and sometimes contrarily, according <strong>to</strong> the<br />

particular differences in the suppositions.' 2<br />

'<br />

(The words with reference <strong>to</strong> the straight line are obscure, but<br />

'<br />

the straight line is presumably some obvious straight line in<br />

each figure, e. g., when there are two given points, the straight<br />

line joining them.) After quoting three obvious loci added<br />

'<br />

<strong>by</strong> Charmandrus ', Pappus gives three loci which, though containing<br />

an unnecessary restriction in the third case, amount<br />

<strong>to</strong> the statement that any equation <strong>of</strong> the first degree between<br />

coordinates inclined at fixed angles <strong>to</strong> (a) two axes perpendicular<br />

or oblique, (h) <strong>to</strong> any number <strong>of</strong> axes, represents a<br />

straight line. The enunciations (5-7) are as follows. 3<br />

5. ' If, when a straight line is given in magnitude and is<br />

moved so as always <strong>to</strong> be parallel <strong>to</strong> a certain straight line<br />

given in position, one <strong>of</strong> the extremities (<strong>of</strong> the moving<br />

straight line), lies on a straight line given in position, the<br />

1<br />

Pappus, vii, pp. 660. 18-662. 5.<br />

3<br />

lb., pp. 664. 20-666. 6.<br />

2 16,'vii, pp. 662. 25-664. 7.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!