27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In the first<br />

DETERMINATE EQUATIONS 465<br />

and third <strong>of</strong> the last three cases the limits are not<br />

accurate, but are integral limits which are a fortiori safe.<br />

In the second f § should have been § J,<br />

and it would have been<br />

more correct <strong>to</strong> say that, if x is not greater than f<br />

-£ and not<br />

less than ff<br />

, the given conditions are a fortiori satisfied.<br />

For comparison with <strong>Diophantus</strong>'s solutions <strong>of</strong> quadratic<br />

equations we may refeV <strong>to</strong> a few <strong>of</strong> his solutions <strong>of</strong><br />

(3) Simultaneous equations involving quadratics.<br />

In I. 27, 28, and 30 we have the following pairs <strong>of</strong> equations.<br />

(a) ^rj = 2a] (/3) £ + v = 2a\ (y) £- V = 2a)<br />

I use the <strong>Greek</strong> letters for the numbers required <strong>to</strong> be found<br />

as distinct <strong>from</strong> the one unknown which <strong>Diophantus</strong> uses, and<br />

which I shall call x.<br />

In (a), he says, let £ — r] = 2x (£ > rj).<br />

It follows, <strong>by</strong> addition and subtraction, that £ = a + x,<br />

tj — a — x\<br />

therefore £rj — (a + x) (a — x) = a 2 — x 2 = B,<br />

and x is found <strong>from</strong> the pure quadratic equation.<br />

In (/3) similarly he assumes £ — t] = 2x, and the resulting<br />

equation is £ 2 + rj 2 — (a + x) 2 + (a — x)<br />

2<br />

= 2 (a 2 + x 2 )<br />

= B.<br />

In (y) he puts £ + ?; = 2x and solves as in the case <strong>of</strong> (a).<br />

(4) Cubic equation.<br />

Only one very particular case occurs.<br />

leads <strong>to</strong> the equation<br />

x 2 + 2x + 3 = x* + 3x — 3x 2 — 1.<br />

In VI. 17 the problem<br />

<strong>Diophantus</strong> says simply ' whence x is found <strong>to</strong> be 4 '. In fact<br />

the equation reduces <strong>to</strong><br />

x z + x = 4x 2 + 4.<br />

<strong>Diophantus</strong> no doubt detected, and divided out <strong>by</strong>, the common<br />

fac<strong>to</strong>r x 2 + 1 , leaving x = 4.<br />

1523.2 H ll<br />

466 DIOPHANTUS OF ALEXANDRIA<br />

(B)<br />

Indeterminate equations.<br />

<strong>Diophantus</strong> says nothing <strong>of</strong> indeterminate equations <strong>of</strong> the<br />

first degree. The reason is perhaps that it is a principle with<br />

him <strong>to</strong> admit rational fractional as well as integral solutions,<br />

whereas the whole point <strong>of</strong> indeterminate equations <strong>of</strong> the<br />

first degree is <strong>to</strong> obtain a solution in integral numbers.<br />

Without this limitation (foreign <strong>to</strong> <strong>Diophantus</strong>) such equations<br />

have no significance.<br />

(a) Indeterminate equations <strong>of</strong> the second degree.<br />

The form in which these equations occur is invariably this<br />

one or two (but never more) functions <strong>of</strong> x <strong>of</strong> the form<br />

Ax 2 -f Bx + G or simpler forms are <strong>to</strong> be made rational square<br />

numbers <strong>by</strong> finding a suitable value for x. That is, we have<br />

<strong>to</strong> solve, in the most general case, one or two equations <strong>of</strong> the<br />

form Ax 2 + Bx + C = y<br />

2<br />

.<br />

(1) Single equation.<br />

The solutions take different forms according <strong>to</strong> the particular<br />

values <strong>of</strong> the coefficients. Special cases arise when one or<br />

more <strong>of</strong> them vanish or they satisfy certain conditions.<br />

1. When A or G or both vanish, the equation can always<br />

be solved rationally.<br />

2<br />

Form Bx = y<br />

.<br />

2<br />

Form Bx + G = y<br />

.<br />

<strong>Diophantus</strong> puts for y 2 any determinate square m 2 , and x is<br />

immediately found.<br />

Form Ax 2 + Bx — y<br />

2<br />

.<br />

<strong>Diophantus</strong> puts for y any multiple <strong>of</strong> x, as — x.<br />

2. The equation Ax 2 + C = y2<br />

can be rationally solved according<br />

<strong>to</strong> <strong>Diophantus</strong><br />

(a) when A is positive and a square, say a 2 ;<br />

in this case we put a 2 x 2 + G = (ax ± m) 2 , whence<br />

x= -\<br />

C — m 2<br />

(m and the sign being so chosen as <strong>to</strong> give x a positive value)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!