27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE CONICS 133<br />

may intersect, <strong>to</strong>uch, or both) the part which is claimed<br />

as new is the extension <strong>to</strong> the intersections <strong>of</strong> the parabola,<br />

ellipse, and circle with the double-branch hyperbola, and <strong>of</strong><br />

two double-branch hyperbolas with one another, <strong>of</strong> the investigations<br />

which had theret<strong>of</strong>ore only taken account <strong>of</strong> the<br />

single-branch hyperbola. Even in Book V, the most remarkable<br />

<strong>of</strong> all, Apollonius does not say that normals as the shortest<br />

'<br />

lines ' had not been considered before, but only that they had<br />

been superficially <strong>to</strong>uched upon, doubtless in connexion with<br />

propositions dealing with the tangent properties. He explains<br />

that he found it convenient <strong>to</strong> treat <strong>of</strong> the tangent properties,<br />

without any reference <strong>to</strong> normals, in the first Book in order<br />

<strong>to</strong> connect them with the chord properties.<br />

It is clear, therefore,<br />

that in treating normals as maxima and minima, and <strong>by</strong><br />

themselves, without any reference <strong>to</strong> tangents, as he does in<br />

Book V, he was making an innovation ; and, in view <strong>of</strong> the<br />

extent <strong>to</strong> which the theory <strong>of</strong> normals as maxima and minima<br />

is developed <strong>by</strong> him (in 77 propositions), there is no wonder<br />

that he should devote a whole Book <strong>to</strong> the subject. Apart<br />

<strong>from</strong> the developments in Books <strong>II</strong>I, IV, V, just mentioned,<br />

and the numerous new propositions in Book V<strong>II</strong> with the<br />

problems thereon which formed the lost Book V<strong>II</strong>I, Apollonius<br />

only claims <strong>to</strong> have treated the whole subject more fully and<br />

generally than his predecessors.<br />

Great generality <strong>of</strong> treatment <strong>from</strong> the beginning.<br />

So far <strong>from</strong> being a braggart and taking undue credit<br />

himself for the improvements which he made upon his predecessors,<br />

Apollonius is, if anything, <strong>to</strong>o modest in his description<br />

<strong>of</strong> his personal contributions <strong>to</strong> the theory <strong>of</strong> conic<br />

sections. For the more fully and generally ' ' <strong>of</strong> his first<br />

preface scarcely conveys an idea <strong>of</strong> the extreme generality<br />

with which the whole subject is worked out.<br />

This characteristic<br />

generality appears at the very outset.<br />

Analysis <strong>of</strong> the<br />

Book I.<br />

Conies.<br />

<strong>to</strong><br />

Apollonius begins <strong>by</strong> describing a double oblique circular<br />

cone in the most general way. Given a circle and any point<br />

outside the plane <strong>of</strong> the circle and in general not lying on the<br />

134 APOLLONIUS OF PERGA<br />

straight line through the centre <strong>of</strong><br />

the circle perpendicular <strong>to</strong><br />

its plane, a straight line passing through the point and produced<br />

indefinitely in both directions is made <strong>to</strong> move, while<br />

always passing through the fixed point, so as <strong>to</strong> pass successively<br />

through all the points <strong>of</strong> the circle ; the straight line<br />

thus describes a double cone which is in general oblique or, as<br />

Apollonius calls it, scalene. Then, before proceeding <strong>to</strong> the<br />

geometry <strong>of</strong> a cone, Apollonius gives a number <strong>of</strong> definitions<br />

which, though <strong>of</strong> course only required for conies, are stated as<br />

applicable <strong>to</strong> any curve.<br />

1<br />

In any curve,' says Apollonius, ' I give the name diameter <strong>to</strong><br />

any straight line which, drawn <strong>from</strong> the curve, bisects all the<br />

straight lines drawn in the curve (chords) parallel <strong>to</strong> any<br />

straight line, and I call the extremity <strong>of</strong> the straight line<br />

(i.e. the diameter) which is at the curve a vertex <strong>of</strong> the curve<br />

and each <strong>of</strong> the parallel straight lines (chords) an ordinate<br />

(lit. drawn ordinate- wise, reray/zej/o)? KaTrj-^Oai) <strong>to</strong> the<br />

diameter/<br />

He then extends these terms <strong>to</strong> a pair <strong>of</strong> curves (the primary<br />

reference being <strong>to</strong> the double-branch hyperbola), giving the<br />

name transverse diameter <strong>to</strong> any straight line bisecting all the<br />

chords in both curves which are parallel<br />

<strong>to</strong> a given straight<br />

line (this gives two vertices where the diameter meets the<br />

curves respectively), and the name erect diameter (6p6ia) <strong>to</strong><br />

any straight line which bisects all straight lines drawn<br />

between one curve and the other which are parallel <strong>to</strong> any<br />

straight line ; the ordinates <strong>to</strong> any diameter are again the<br />

parallel straight lines bisected <strong>by</strong> it. Conjugate diameters in<br />

any curve or pair <strong>of</strong> curves are straight lines each <strong>of</strong> which<br />

bisects chords parallel <strong>to</strong> the other. Axes are the particular<br />

diameters which cut at right angles the parallel chords which<br />

they bisect ; and conjugate axes are related in the same way<br />

as conjugate diameters. Here we have practically our modern<br />

definitions, and there is a great advance on Archimedes's<br />

terminology.<br />

The conies obtained in the<br />

oblique cone.<br />

most general way <strong>from</strong> an<br />

Having described a cone (in general oblique), Apollonius<br />

defines the axis as the straight line drawn <strong>from</strong> the vertex <strong>to</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!