27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

FOCUS-DIRECTRIX PROPERTY 121<br />

Similarly it can be shown that<br />

2<br />

(1 *e):e = XK':A'N.<br />

By multiplication, XK . XK' :AN. A'N = (1 - e ) e2 : ;<br />

and it follows <strong>from</strong> above, ex aequali, that<br />

PN 2 :AN.A'N=(l~e 2 ):l,<br />

which is the property <strong>of</strong> a central conic.<br />

When e < 1, A and A' lie on the same side <strong>of</strong> 1, while<br />

N lies on A A', and the conic is an ellipse ; when e > 1, A and<br />

A / lie on opposite sides <strong>of</strong> X, while N lies on A'A produced,<br />

and the conic is a hyperbola.<br />

The case where e = 1 and the curve is a parabola is easy<br />

and need not be reproduced here.<br />

The treatise would doubtless contain other loci <strong>of</strong> types<br />

similar <strong>to</strong> that which, as Pappus says, was used for the<br />

trisection <strong>of</strong> an angle : I refer <strong>to</strong> the proposition already<br />

quoted (vol. i, p. 243) that, if A, B are the base angles <strong>of</strong><br />

a triangle with vertex P, and AB = 2 A A, the locus <strong>of</strong> P<br />

is a hyperbola with eccentricity 2.<br />

Propositions included in Euclid's Conies.<br />

That Euclid's<br />

Conies covered much <strong>of</strong> the same ground as<br />

the first three Books <strong>of</strong> Apollonius is clear <strong>from</strong> the language<br />

<strong>of</strong> Apollonius himself. Confirmation is forthcoming in the<br />

quotations <strong>by</strong> Archimedes <strong>of</strong> propositions (1) 'proved in<br />

the elements <strong>of</strong> conies ', or (2) assumed without remark as<br />

already known. The former class include the fundamental<br />

ordinate properties <strong>of</strong> the conies in the following forms<br />

(1) for the ellipse,<br />

PN 2 : AN. A'N = P'N' 2 : AN'. A'N' = BC 2 :AG 2 ;<br />

(2) for the hyperbola,<br />

PN 2 : AN. A'N = P'N' 2 : AN' .A'N';<br />

(3) for the parabola, PN 2 = pa<br />

. AN;<br />

the principal tangent properties <strong>of</strong> the parabola<br />

the property that, if there are two tangents drawn <strong>from</strong> one<br />

point <strong>to</strong> any conic section whatever, and two intersecting<br />

122 CONIC SECTIONS<br />

chords drawn parallel <strong>to</strong> the tangents respectively, the rectangles<br />

contained <strong>by</strong> the segments <strong>of</strong> the chords respectively<br />

are <strong>to</strong> one another as the squares <strong>of</strong> the parallel tangents<br />

the <strong>by</strong> no means easy proposition that, if in a parabola the<br />

diameter through P bisects the chord QQ' in V, and QD is<br />

drawn perpendicular <strong>to</strong> PV, then<br />

where pa is the parameter <strong>of</strong> the principal ordinates and p is<br />

the parameter <strong>of</strong> the ordinates <strong>to</strong> the diameter PV.<br />

Conic sections in Archimedes.<br />

But we must equally regard Euclid's Conies as the source<br />

<strong>from</strong> which Archimedes <strong>to</strong>ok most <strong>of</strong> the other ordinary<br />

properties <strong>of</strong> conies which he assumes without pro<strong>of</strong>. Before<br />

summarizing these it will be convenient <strong>to</strong> refer <strong>to</strong> Archimedes's<br />

terminology. We have seen that the axes <strong>of</strong> an<br />

ellipse<br />

are not called axes but diameters, greater and lesser<br />

the axis <strong>of</strong> a parabola is likewise its diameter and the other<br />

diameters are ' lines parallel <strong>to</strong> the diameter ', although in<br />

a segment <strong>of</strong> a parabola the diameter bisecting the base is<br />

the ' diameter ' <strong>of</strong> the segment. The two ' diameters ' (axes)<br />

<strong>of</strong> an ellipse are conjugate. In the case <strong>of</strong> the hyperbola the<br />

'<br />

diameter ' (axis) is the portion <strong>of</strong> it within the (single- branch)<br />

hyperbola ; the centre is not called the ' centre ', but the point<br />

in which the nearest '<br />

lines <strong>to</strong> the section <strong>of</strong> an obtuse-angled<br />

cone' (the asymp<strong>to</strong>tes) meet; the half <strong>of</strong> the axis (CA) is<br />

'<br />

the line adjacent <strong>to</strong> the axis ' (<strong>of</strong> the hyperboloid <strong>of</strong> revolution<br />

obtained <strong>by</strong> making the hyperbola revolve about its 'diameter'),<br />

and A'A is double <strong>of</strong> this line. Similarly GP is the line<br />

'<br />

adjacent <strong>to</strong> the axis ' <strong>of</strong> a segment <strong>of</strong> the hyperboloid, and<br />

P'P double <strong>of</strong> this line. It is clear that Archimedes did not<br />

yet treat the two branches <strong>of</strong> a hyperbola as forming one<br />

curve ; this was reserved for Apollonius.<br />

The main properties <strong>of</strong> conies assumed <strong>by</strong> Archimedes in<br />

addition <strong>to</strong> those above mentioned may be summarized thus.<br />

Central<br />

Conies.<br />

1. The property <strong>of</strong> the ordinates <strong>to</strong> any diameter PP\<br />

QV 2 :PV.P / V = Q'V' 2 :PV'.P'V.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!