27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE COLLECTION. BOOKS V, VI 397<br />

The Sphaerica <strong>of</strong> Theodosius is dealt with at some length<br />

(chaps. 1-26, Props. 1-27), and so are the theorems <strong>of</strong><br />

Au<strong>to</strong>lycus On the moving Sphere (chaps. 27-9), Theodosius<br />

On Days and Nights (chaps. 30-6, Props. 29-38), <strong>Aristarchus</strong><br />

On the sizes and distances <strong>of</strong> the Sun and Moon (chaps. 37-40,<br />

including a proposition, Prop. 39 with two lemmas, which is<br />

corrupt at the end and is<br />

not really proved), Euclid's Optics<br />

(chaps. 41-52, Props. 4 2-54), and Euclid's Phaenomena (chaps.<br />

53-60, Props. 55-61).<br />

Problem arising out <strong>of</strong> Euclid's<br />

'Optics'.<br />

There is little in the Book <strong>of</strong> general mathematical interest<br />

except the following propositions which occur in the section on<br />

Euclid's Optics.<br />

Two propositions are fundamental in solid geometry,<br />

namely<br />

(a) If <strong>from</strong> a point A above a plane AB be drawn perpendicular<br />

<strong>to</strong> the plane, and if <strong>from</strong> B a straight line BD be<br />

drawn perpendicular <strong>to</strong> any straight line EF in the plane,<br />

then will AD also be perpendicular <strong>to</strong> EF (Prop. 43).<br />

(b)<br />

If <strong>from</strong> a point A above a plane AB be drawn <strong>to</strong> the plane<br />

but not at right angles <strong>to</strong> it, and AM be drawn perpendicular<br />

<strong>to</strong> the plane (i.e.<br />

if BM be the orthogonal projection <strong>of</strong> BA on<br />

the plane), the angle ABM is the least <strong>of</strong> all the angles which<br />

AB makes with any straight lines through B, as BP, in the<br />

plane ; the angle ABP increases as BP moves away <strong>from</strong> BM<br />

on either side ; and, given any straight line BP making<br />

a certain angle with BA, only one other straight line<br />

plane will make the<br />

in the<br />

same angle with BA, namely a straight<br />

line BP /<br />

on the other side <strong>of</strong> BM making the same angle with<br />

it that BP does (Prop. 44).<br />

These are the first <strong>of</strong> a series <strong>of</strong> lemmas leading up <strong>to</strong> the<br />

main problem, the investigation <strong>of</strong> the apparent form <strong>of</strong><br />

a circle as seen <strong>from</strong> a point outside its plane. In Prop. 50<br />

(= Euclid, Optics, 34) Pappus proves the fact that all the<br />

diameters <strong>of</strong> the circle will appear equal if the straight line<br />

drawn <strong>from</strong> the point representing the eye <strong>to</strong> the centre <strong>of</strong><br />

the circle is either (a) at right angles <strong>to</strong> the plane- <strong>of</strong> the circle<br />

or (b), if not at right angles <strong>to</strong> the plane <strong>of</strong> the circle, is equal<br />

398 PAPPUS OF ALEXANDRIA<br />

in length <strong>to</strong> the radius <strong>of</strong> the circle. In all other cases<br />

(Prop. 51 = Eucl. Optics, 35) the diameters will appear unequal.<br />

Pappus's other propositions carry farther Euclid's remark<br />

that the circle seen under these conditions will appear<br />

deformed or dis<strong>to</strong>rted (Trapecnracrfiii'os), proving (Prop. 53,<br />

pp. 588-92) that the apparent form will be an ellipse with its<br />

centre not, ' as some think ', at the centre <strong>of</strong> the circle but<br />

at another point in it, determined in this way. Given a circle<br />

ABDE with centre 0, let the eye be at a point F above the<br />

plane <strong>of</strong> the circle such that FO is neither perpendicular<br />

<strong>to</strong> that plane nor equal <strong>to</strong> the radius <strong>of</strong> the circle. Draw FG<br />

perpendicular <strong>to</strong> the plane <strong>of</strong> the circle and let ADG be the<br />

diameter through G. Join AF, DF, and bisect the angle AFD<br />

<strong>by</strong> the straight line FG meeting AD in C. Through G draw<br />

BE perpendicular <strong>to</strong> AD, and let the tangents at B, E meet<br />

AG produced in K. Then Pappus proves that G (not 0) is the<br />

centre <strong>of</strong> the apparent ellipse, that AD, BE are its major and<br />

minor axes respectively, that the ordinates <strong>to</strong> AD are parallel<br />

<strong>to</strong><br />

BE both really and apparently, and that the ordinates <strong>to</strong><br />

BE will pass through K but will appear <strong>to</strong> be parallel <strong>to</strong> AD.<br />

Thus in the figure, G being the centre <strong>of</strong> the apparent ellipse,<br />

it is proved that, if LGM is any straight line through G, LG is<br />

apparently equal <strong>to</strong> CM (it is practically assumed— a proposition<br />

proved later in Book V<strong>II</strong>, Prop. 156—that, if LK meet<br />

the circle again in P, and if PM be drawn perpendicular <strong>to</strong><br />

AD <strong>to</strong> meet the circle again in M, LM passes through G).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!