27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Now<br />

THE COLLECTION. BOOK <strong>II</strong>I 367<br />

EA+AC > EF+FC<br />

> EG + GC and > GC, a fortiori.<br />

Produce GC <strong>to</strong> K so that GK = EA+AC, and with G as<br />

centre and GK as radius describe a circle. This circle w T ill<br />

meet EC and HG, because GH = EB > BD or DA+AC and<br />

> GK, a fortiori.<br />

Then HG + GL = BE+EA+AC=BA + AC.<br />

To obtain two straight lines HG', G'L such that HG'+G'L<br />

> BA + AC, we have only <strong>to</strong> choose G' so that HG', G'L<br />

enclose the straight lines HG, GL completely.<br />

Next suppose that, given a triangle A BC in which BC > BA<br />

> AC, we are required <strong>to</strong> draw <strong>from</strong> two points on BC <strong>to</strong><br />

an internal point two straight lines greater respectively than<br />

BA, AC.<br />

With B as centre and BA as radius describe the arc AEF.<br />

and any point D on BE produced<br />

Take any point E on it,<br />

but within the triangle. Join DC, and produce it <strong>to</strong> G so<br />

that DG = AC. Then with D as centre and DG as radius<br />

describe a circle. This will meet both BC and BD because<br />

BA > AC, and a fortiori DB > DG.<br />

Then, if L be any point on BH, it is clear that BD, DL<br />

are two straight lines satisfying the conditions.<br />

A point L' on BH can be found such that DL' is equal<br />

<strong>to</strong> A B <strong>by</strong> marking <strong>of</strong>f DN on DB equal <strong>to</strong> A B and drawing<br />

with D as centre and DiV as radius a circle meeting BH<br />

in L'. Also, if DH be joined, DH = AC.<br />

Propositions follow (35-9) having a similar relation <strong>to</strong> the<br />

Postulate in Archimedes, On the Sphere and Cylinder, I,<br />

about conterminous broken lines one <strong>of</strong> which wholly encloses<br />

368 PAPPUS OF ALEXANDRIA<br />

the other, i.e. it is shown that broken lines, consisting <strong>of</strong><br />

several straight lines, can be drawn with two points on the<br />

base <strong>of</strong> a triangle or parallelogram as extremities, and <strong>of</strong><br />

greater <strong>to</strong>tal length than the remaining two sides <strong>of</strong> the<br />

triangle or three sides <strong>of</strong> the parallelogram.<br />

Props. 40-2 show that triangles or parallelograms can be<br />

constructed with sides respectively greater than those <strong>of</strong> a given<br />

triangle or parallelogram but having a less area.<br />

Section (4). The inscribing <strong>of</strong> the five regular solids<br />

in a<br />

sphere.<br />

The fourth section <strong>of</strong> Book <strong>II</strong>I (pp. 132-62) solves the<br />

problems <strong>of</strong> inscribing each <strong>of</strong> the five regular solids in a<br />

given sphere. After some preliminary lemmas (Props. 43-53),<br />

Pappus attacks the substantive problems (Props. 54-8), using<br />

the method <strong>of</strong> analysis followed <strong>by</strong> synthesis in the case <strong>of</strong><br />

each solid.<br />

(a) In order <strong>to</strong> inscribe a regular pyramid or tetrahedron in<br />

the sphere, he finds two circular sections equal and parallel<br />

<strong>to</strong> one another, each <strong>of</strong> which contains one <strong>of</strong> two opposite<br />

edges as its diameter.<br />

If d be the diameter <strong>of</strong> the sphere, the<br />

parallel circular sections have d' as diameter, where d 2 — \d' 2 .<br />

(b) In the case <strong>of</strong> the cube Pappus again finds two parallel<br />

circular sections with diameter df such that d = 2 ^d' 2 ;<br />

a square<br />

inscribed in one <strong>of</strong> these circles is one face <strong>of</strong> the cube and<br />

the square with sides parallel <strong>to</strong> those <strong>of</strong> the first square<br />

inscribed in the second circle is the opposite face.<br />

(c) In the case <strong>of</strong> the octahedron the same two parallel circular<br />

sections with diameter d' such that d = 2 fcT<br />

2<br />

are used; an<br />

equilateral triangle inscribed in one circle is<br />

one face, and the<br />

opposite face is an equilateral triangle inscribed in the other<br />

circle but placed in exactly the opposite way.<br />

(d)<br />

In the case <strong>of</strong> the icosahedron Pappus finds four parallel<br />

circular sections each passing through three <strong>of</strong> the vertices <strong>of</strong><br />

the icosahedron ; two <strong>of</strong> these are small circles circumscribing<br />

two opposite triangular faces respectively, and the other two<br />

circles are between these two circles, parallel <strong>to</strong> them, and<br />

equal <strong>to</strong> one another. The pairs <strong>of</strong> circles are determined in

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!