27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ZENODORUS 209<br />

The triangles NMK, HDL are now equal in all respects, and<br />

NK is equal <strong>to</strong> HL, so that GK < HL.<br />

But the area <strong>of</strong> the polygon ABC is half the rectangle<br />

contained <strong>by</strong> GK and the perimeter, while the area <strong>of</strong> the<br />

polygon DEF is half the rectangle contained <strong>by</strong> HL and<br />

the same perimeter.<br />

is the greater.<br />

Therefore the area <strong>of</strong> the polygon DEF<br />

(2) The pro<strong>of</strong> that a circle is greater than any regular<br />

polygon with the same perimeter is deduced immediately <strong>from</strong><br />

Archimedes's proposition that the area <strong>of</strong> a circle is equal<br />

<strong>to</strong> the right-angled triangle with perpendicular side<br />

equal <strong>to</strong><br />

the radius and base equal <strong>to</strong> the perimeter <strong>of</strong> the circle<br />

Zenodorus inserts a pro<strong>of</strong> in extenso <strong>of</strong> Archimedes's proposition,<br />

with preliminary lemma. The perpendicular <strong>from</strong><br />

the centre <strong>of</strong> the circle circumscribing the polygon is easily<br />

proved <strong>to</strong> be less than the radius <strong>of</strong> the given circle with<br />

perimeter equal <strong>to</strong> that <strong>of</strong> the polygon ; whence the proposition<br />

follows.<br />

(3) The pro<strong>of</strong> <strong>of</strong> this proposition depends on some preliminary<br />

lemmas. The first proves that, if there be two<br />

triangles on the same base and with the<br />

same perimeter, one being isosceles and<br />

the other scalene, the isosceles<br />

has the greater area.<br />

triangle<br />

(Given the scalene<br />

triangle BDC on the base BC, it is easy <strong>to</strong><br />

draw on BC as base the isosceles triangle<br />

having the same perimeter. We have<br />

only <strong>to</strong> take BH equal <strong>to</strong> ±(BD + DC),<br />

bisect BC at E, and erect at E the perpendicular<br />

AE such that AE = BH 2<br />

2 -BE\)<br />

Produce BA <strong>to</strong> F so that BA — AF, and join AD, DF.<br />

Then BD + DF> BF, i.e. BA + AC, i.e. BD + DC, <strong>by</strong> hypothesis;<br />

therefore DF > DC, whence in the triangles FAD,<br />

CAD the angle FAD > the angle CAD.<br />

Therefore<br />

Z FA D > \ Z FA C<br />

> LBCA.<br />

Make the angle FAG equal <strong>to</strong> the angle BCA or ABC, so<br />

that AG is parallel <strong>to</strong> BC; let BD produced meet AG in G,<br />

and join GG.<br />

1523.2 P<br />

210 SUCCESSORS OF THE GREAT GEOMETERS<br />

Then<br />

The second lemma is<br />

A ABC = A GBC<br />

> ADBC.<br />

<strong>to</strong> the effect that, given two isosceles<br />

triangles not similar <strong>to</strong> one another, if we construct on the<br />

same bases two triangles similar <strong>to</strong> one another such that the<br />

sum <strong>of</strong> their perimeters is equal <strong>to</strong> the sum <strong>of</strong> the perimeters<br />

<strong>of</strong> the first two triangles, then the sum <strong>of</strong> the areas <strong>of</strong> the<br />

similar triangles is greater than the sum <strong>of</strong> the areas <strong>of</strong><br />

the non-similar triangles. (The easy construction <strong>of</strong> the<br />

similar triangles is given in a separate lemma.)<br />

Let the bases <strong>of</strong> the isosceles triangles, EB, BC\ be placed in<br />

one straight line, BG being greater than EB.<br />

Let ABC, DEB be the similar isosceles triangles, and FBG,<br />

GEB the non-similar, the triangles being such that<br />

BA + AC + ED +DB = BF+ FG+EG + GB.<br />

Produce AF, GD <strong>to</strong> meet the bases in K, L.<br />

AK, GL bisect BG, EB at right angles at K, L.<br />

Produce GL <strong>to</strong> H, making LH equal <strong>to</strong> GL.<br />

Join HB and produce it <strong>to</strong> J\ r join HF.<br />

;<br />

Then clearly<br />

Now, since the triangles A BG, DEB are similar, the angle<br />

ABC is equal <strong>to</strong> the angle DEB or DBE.<br />

Therefore Z NBG ( = Z HBE = Z GBE) > Z DBE or Z ABC<br />

;<br />

therefore the angle ABH<br />

f<br />

and a fortiori the angle FBH, is<br />

less than two right angles, and HF meets BK in some point M.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!