27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Therefore<br />

THE COLLECTION. BOOK IV 385<br />

A 2tt-4 &* —<br />

(surface <strong>of</strong> hemisphere) 2n \iv<br />

(segment ABC) -,<br />

*<br />

"" (sec<strong>to</strong>r I)ABC) J<br />

The second part <strong>of</strong> the last section <strong>of</strong> Book IV (chaps. 36-41,<br />

pp. 270-302) is mainly concerned with the problem <strong>of</strong> trisecting<br />

any given angle or dividing it in<strong>to</strong> parts in any given<br />

ratio. Pappus begins with another account <strong>of</strong> the distinction<br />

between plane, solid and linear problems (cf . Book <strong>II</strong>I, chaps.<br />

20-2) according as they require for their solution (1) the<br />

straight line and circle only, (2) conies or their equivalent,<br />

(3) higher curves still, 'which have a more complicated and<br />

forced (or unnatural) origin, being produced <strong>from</strong> more<br />

irregular surfaces and involved motions. Such are the curves<br />

which are discovered in the so-called loci on surfaces, as<br />

well as others more complicated still and many in number<br />

discovered <strong>by</strong> Demetrius <strong>of</strong> Alexandria in his Linear considerations<br />

and <strong>by</strong> Philon <strong>of</strong> Tyana <strong>by</strong> means <strong>of</strong> the interlacing<br />

<strong>of</strong> plec<strong>to</strong>ids and other surfaces <strong>of</strong> all sorts, all <strong>of</strong> which<br />

curves possess many remarkable properties peculiar <strong>to</strong> them.<br />

Some <strong>of</strong> these curves have been thought bv the more recent<br />

writers <strong>to</strong> be worthy <strong>of</strong> considerable discussion ;<br />

one <strong>of</strong> them is<br />

that which also received <strong>from</strong> Menelaus the name <strong>of</strong> the<br />

paradoxical curve. Others <strong>of</strong> the same class are spirals,<br />

quadratrices, cochloids and cissoids.' He adds the <strong>of</strong>ten-quoted<br />

reflection on the error committed <strong>by</strong> geometers when they<br />

'<br />

solve a problem <strong>by</strong> means <strong>of</strong> an inappropriate class ' (<strong>of</strong><br />

curve or its equivalent), illustrating this <strong>by</strong> the use in<br />

Apollonius, Book V, <strong>of</strong> a rectangular hyperbola for finding the<br />

feet <strong>of</strong> normals <strong>to</strong> a parabola passing through one point<br />

(where a circle would serve the purpose), and <strong>by</strong> the assumption<br />

<strong>by</strong> Archimedes <strong>of</strong> a solid vevcris in his book On Spirals<br />

(see above, pp. 65-8).<br />

Trisection (or division in any ratio) <strong>of</strong> any angle.<br />

The method <strong>of</strong> trisecting any angle based on a certain vevo-i y<br />

is next described, with the solution <strong>of</strong> the vevo-i$ itself <strong>by</strong><br />

1523 ? C C<br />

386 PAPPUS OF ALEXANDRIA<br />

means <strong>of</strong> a hyperbola which has <strong>to</strong> be constructed <strong>from</strong> certain<br />

data, namely the asymp<strong>to</strong>tes and a certain point through<br />

which the curve must pass (this easy construction is given in<br />

Prop. 33, chap. 41-2). Then the problem is directly solved<br />

(chaps. 43, 44) <strong>by</strong> means <strong>of</strong> a hyperbola in two ways practically<br />

equivalent, the hyperbola being determined in the one<br />

case <strong>by</strong> the ordinary Apollonian property, but in the other <strong>by</strong><br />

means <strong>of</strong> the focus-directrix property. Solutions follow <strong>of</strong><br />

the problem <strong>of</strong> dividing any angle in a given ratio <strong>by</strong> means<br />

(1) <strong>of</strong> the quadratrix, (2) <strong>of</strong> the spiral <strong>of</strong> Archimedes (chaps.<br />

45, 46). All these solutions have been sufficiently described<br />

above (vol. i, pp. 235-7, 241-3, 225-7).<br />

Some problems follow (chaps. 47-51) depending on these<br />

results, namely those <strong>of</strong> constructing an isosceles triangle in<br />

which either <strong>of</strong> the base angles has a given ratio <strong>to</strong> the vertical<br />

angle (Prop. 37), inscribing in a circle a regular polygon <strong>of</strong><br />

any number <strong>of</strong> sides (Prop. 38), drawing a circle the circumference<br />

<strong>of</strong> which shall be equal <strong>to</strong> a given straight line (Prop.<br />

39), constructing on a given straight line AB a segment <strong>of</strong><br />

a circle such that the arc <strong>of</strong> the segment may have a given<br />

ratio <strong>to</strong> the base (Prop. 40), and constructing an angle incommensurable<br />

with a given angle (Prop. 41).<br />

Section (5). Solution <strong>of</strong> the v ever is <strong>of</strong> Archimedes, * On Spirals',<br />

Pro}). 8, <strong>by</strong> means <strong>of</strong> conies.<br />

Book IV concludes with the solution <strong>of</strong> the vevcri? which,<br />

according <strong>to</strong> Pappus, Archimedes unnecessarily assumed in<br />

On Spirals, Prop. 8. Archimedes's assumption is this. Given<br />

a circle, a chord (BC) in it less than the diameter, and a point<br />

A on the circle the perpendicular <strong>from</strong> which <strong>to</strong> BC cuts BC<br />

again<br />

in a point D such that BD > DO and meets the circle<br />

in E, it is possible <strong>to</strong> draw through A a straight line ARP<br />

cutting BC in R and the circle in P in such a way that RP<br />

shall be equal <strong>to</strong> DE (or, in the phraseology <strong>of</strong> yeva-ei?, <strong>to</strong><br />

place between the straight line BC and the circumference<br />

<strong>of</strong> the circle a straight line equal <strong>to</strong> DE and verging<br />

<strong>to</strong>wards A).<br />

Pappus makes the problem rather more general <strong>by</strong> not<br />

requiring PR <strong>to</strong> be equal <strong>to</strong> DE, but making it <strong>of</strong> any given

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!