27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

•<br />

By<br />

THE CONIGS, BOOK <strong>II</strong> 149<br />

angle (<strong>II</strong>. 50), making a given angle with the diameter through<br />

the point <strong>of</strong> contact (<strong>II</strong>. 51, 53) <strong>II</strong>. 52 contains a Siopio-pos for ; so that ACQT= CU'R'F'.<br />

150 APOLLONIUS OF PERGA<br />

the portions <strong>of</strong> the asymp<strong>to</strong>tes which include between them<br />

the last problem, proving that, if the tangent <strong>to</strong> an ellipse at<br />

a branch <strong>of</strong> the conjugate hyperbola (<strong>II</strong>. 11), the constancy <strong>of</strong><br />

any point P meets the major axis in T, the angle GPT is not<br />

the rectangle contained <strong>by</strong> the straight lines drawn <strong>from</strong> any<br />

greater than the angle ABA', where B is one extremity <strong>of</strong> the<br />

point <strong>of</strong> the curve in fixed directions <strong>to</strong> meet the asymp<strong>to</strong>tes<br />

minor axis.<br />

(equivalent <strong>to</strong> the Cartesian equation with reference <strong>to</strong> the<br />

Book <strong>II</strong>I begins with a series <strong>of</strong> propositions about the<br />

asymp<strong>to</strong>tes, xy = const.) (<strong>II</strong>. 12), and the fact that the curve<br />

equality <strong>of</strong> certain areas, propositions <strong>of</strong> the same kind as, and<br />

and the asymp<strong>to</strong>tes proceed <strong>to</strong> infinity and approach con-<br />

easily derived <strong>from</strong>, the propositions (I. 41-50) <strong>by</strong> means <strong>of</strong><br />

which, as already shown, the transformation <strong>of</strong> coordinates is<br />

the diameters through Q, P respectively in E, T, then<br />

points on two branches the property <strong>of</strong> <strong>II</strong>. 8. <strong>II</strong>. 1 7 shows that<br />

AOPT = A0QE (<strong>II</strong>I. 1, 4)<br />

; and, if P, Q be points on adjacent<br />

'conjugate opposites' (two conjugate double-branch hyperbolas)<br />

have the same asymp<strong>to</strong>tes. Propositions follow about<br />

With the same notation, if R be any other point on the conic,<br />

branches <strong>of</strong> conjugate hyperbolas, AGPE = ACQT (<strong>II</strong>I. 13.).<br />

and if we draw BU parallel <strong>to</strong> the tangent at Q meeting the<br />

the diameters through Q, P in F, W, then AHQF = quadrilateral<br />

HTUR (<strong>II</strong>I. 2. ;<br />

6) this is proved at once <strong>from</strong> the fact<br />

that ABMF= quadrilateral QTUM (see I. 49, 50, or pp. 145-6<br />

above) <strong>by</strong> subtracting or adding the area HRMQ on each<br />

<strong>of</strong> the asymp<strong>to</strong>tes (<strong>II</strong>. 21) if a chord Qq in one branch <strong>of</strong><br />

side. Next take any other point B', and draw B'U', F'H'B'W<br />

;<br />

a hyperbola meet the asymp<strong>to</strong>tes in R, r and the conjugate<br />

in the same way as before ; it is then proved that, if BU, R'W<br />

hyperbola in Q', q', then Q'Q.Qq' = 2 CD 2 (<strong>II</strong>. 23). Of the<br />

meet in I and B'U', R W in J, the quadrilaterals F'IBF, IUU'R'<br />

rest <strong>of</strong> the propositions in this part <strong>of</strong> the Book the following<br />

are equal, and also the quadrilaterals FJB'F', JU'TJR (<strong>II</strong>I. 3,<br />

may be mentioned : if TQ, TQ' are two tangents <strong>to</strong> a conic<br />

7, 9, 10). The pro<strong>of</strong> varies according <strong>to</strong> the actual positions<br />

and V is the middle point <strong>of</strong> QQ', TV is a diameter (<strong>II</strong>. 29,<br />

<strong>of</strong> the points in the figures.<br />

30, 38) ; if tQ, tQ' be tangents <strong>to</strong> opposite branches <strong>of</strong> a hyperbola,<br />

RR' the chord through t parallel <strong>to</strong> QQ', v the middle<br />

In Figs. 1, 2 AHFQ = quadrilateral HTUR,<br />

point <strong>of</strong> QQ', then vR, vR' are tangents <strong>to</strong> the hyperbola<br />

(<strong>II</strong>. 40) ; in a conic, or a circle, or in conjugate hyperbolas, if<br />

AH'F'Q = H'TU'R'.<br />

two chords not passing through the centre intersect, they do not<br />

bisect each other (<strong>II</strong>. 26, 41, 42). <strong>II</strong>. 44-7 show how <strong>to</strong> find<br />

subtraction, FHH'F'= IUU'R + (IB);<br />

a diameter <strong>of</strong> a conic and the centre <strong>of</strong> a central conic, the<br />

axis <strong>of</strong> a parabola and the axes <strong>of</strong> a central conic. The Book<br />

whence, if IE be added or subtracted, F'IRF = IUU'R',<br />

concludes with problems <strong>of</strong> drawing tangents <strong>to</strong> conies in<br />

and again, if IJ be added <strong>to</strong> both, FJR'F' = JU'UR.<br />

certain ways, through any point on or outside the curve<br />

(<strong>II</strong>. 49), making with the axis an angle equal <strong>to</strong> a given acute<br />

In Fig. 3 AR'U'W = A CF'W - A CQT,<br />

tinually nearer <strong>to</strong> one another, so that the distance separating<br />

them can be made smaller than any given length (<strong>II</strong>. 14). <strong>II</strong>. 15<br />

proves that the two opposite branches <strong>of</strong> a hyperbola have the<br />

same asymp<strong>to</strong>tes and <strong>II</strong>. 16 proves for the chord connecting<br />

conjugate hyperbolas; any tangent tcPthe conjugate hyperbola<br />

will meet both branches <strong>of</strong> the original hyperbola<br />

and will be bisected at the point <strong>of</strong> contact (<strong>II</strong>. 19); if Q be<br />

any point on a hyperbola, and GE parallel <strong>to</strong> the tangent<br />

at Q meets the conjugate hyperbola in E, the tangent at<br />

E will be parallel <strong>to</strong> GQ and GQ, GE will be conjugate<br />

diameters (<strong>II</strong>. 20), while the tangents at Q, E will meet on one<br />

effected. We have first the proposition that, if the tangents<br />

at any points P, Q <strong>of</strong> a conic meet in 0, and if they meet<br />

diameter through P^ in U and the diameter through Q in M,<br />

and RW parallel <strong>to</strong> the tangent at P meeting QT in H and

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!