27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GEOMETRY 311<br />

Of this class are the different cases <strong>of</strong> I. 35, 36, <strong>II</strong>I. 7, 8<br />

(where the chords <strong>to</strong> be compared are drawn on different sides<br />

<strong>of</strong> the diameter instead <strong>of</strong> on the same side), <strong>II</strong>I.<br />

12 (which is<br />

not Euclid's at all but Heron's own, adding the case <strong>of</strong><br />

external <strong>to</strong> that <strong>of</strong> internal contact in <strong>II</strong>I. 11 \ VI. 19 (where<br />

the triangle in which an additional line is drawn is taken <strong>to</strong><br />

be the smaller <strong>of</strong> the two), V<strong>II</strong>. 19 (where the particular case<br />

is given <strong>of</strong> three numbers in continued proportion instead <strong>of</strong><br />

four proportionals).<br />

(3) Alternative pro<strong>of</strong>s.<br />

It appears <strong>to</strong> be Heron who first introduced the easy but<br />

uninstructive semi-algebraical method <strong>of</strong> proving the propositions<br />

<strong>II</strong>. 2-10 which is now so popular. On this method the<br />

propositions are proved ' without figures ' as consequences <strong>of</strong><br />

<strong>II</strong>. 1 corresponding <strong>to</strong> the algebraical formula<br />

a (b + c + d + . . .)<br />

= ab + ac -f ad + .<br />

Heron explains that it is not possible <strong>to</strong> prove <strong>II</strong>. 1 without<br />

drawing a number <strong>of</strong> lines (i. e. without actually drawing the<br />

rectangles), but that the following propositions up <strong>to</strong> <strong>II</strong>. 10<br />

can be proved <strong>by</strong> merely drawing one line. He distinguishes<br />

two varieties <strong>of</strong> the method, one <strong>by</strong> dissolutio, the other <strong>by</strong><br />

compositio, <strong>by</strong> which he seems <strong>to</strong> mean splitting-up <strong>of</strong> rectangles<br />

and squares and combination <strong>of</strong> them in<strong>to</strong> others.<br />

But in his pro<strong>of</strong>s he sometimes combines the two varieties.<br />

Alternative pro<strong>of</strong>s are given (a) <strong>of</strong> some propositions <strong>of</strong><br />

Book <strong>II</strong>I, namely <strong>II</strong>I. 25 (placed after <strong>II</strong>I. 30 and starting<br />

<strong>from</strong> the arc instead <strong>of</strong> the chord), <strong>II</strong>I. 10 (proved <strong>by</strong> means<br />

<strong>of</strong> <strong>II</strong>I. 9), <strong>II</strong>I. 13 (a pro<strong>of</strong> preceded <strong>by</strong> a lemma <strong>to</strong> the effect<br />

that a straight line cannot meet a circle in more than two<br />

points).<br />

A class <strong>of</strong> alternative pro<strong>of</strong> is (6) that which is intended <strong>to</strong><br />

meet a particular objection (eWracriy) which had been or might<br />

be raised <strong>to</strong> Euclid's constructions. Thus in certain cases<br />

Heron avoids producing a certain straight line, where Euclid<br />

produces it, the object being <strong>to</strong> meet the objection <strong>of</strong> one who<br />

should deny our right <strong>to</strong> assume that there is any space<br />

available. Of this class are his pro<strong>of</strong>s <strong>of</strong> I. 11, 20 and his<br />

note on I. 16. Similarly in I. 48 he supposes the right-angled<br />

.<br />

312 HERON OF ALEXANDRIA<br />

triangle which is constructed <strong>to</strong> be constructed on the same<br />

side <strong>of</strong> the common side as the given triangle is.<br />

A third class (c) is that which avoids reductio ad absurdum,<br />

e.g. a direct pro<strong>of</strong> <strong>of</strong> I. 19 (for which he requires and gives<br />

a preliminary lemma) and <strong>of</strong> I. 25.<br />

(4) Heron supplies certain converses <strong>of</strong> Euclid's propositions<br />

e.g. <strong>of</strong> <strong>II</strong>. 12, 13 and V<strong>II</strong>I. 27.<br />

(5) A few additions <strong>to</strong>, and extensions <strong>of</strong>, Euclid's propositions<br />

are also found. Some are unimportant, e. g. the construction<br />

<strong>of</strong> isosceles and scalene triangles in a note on I. 1 and the<br />

construction <strong>of</strong> two tangents in <strong>II</strong>I. 17. The most important<br />

extension is that <strong>of</strong> <strong>II</strong>I. 20 <strong>to</strong> the case where the angle at the<br />

circumference is greater than a right angle, which gives an<br />

easy way <strong>of</strong> proving the theorem <strong>of</strong> <strong>II</strong>I. 22. Interesting also<br />

are the notes on I. 37 (on I. 24 in Proclus), where Heron<br />

proves that two triangles with two sides <strong>of</strong> the one equal<br />

<strong>to</strong> two sides <strong>of</strong> the other and with the included angles supplementary<br />

are equal in area, and compares the areas where the<br />

sum <strong>of</strong> the included angles (one being supposed greater than<br />

the other) is less or greater than two right angles, and on I. 47,<br />

where there is a pro<strong>of</strong> (depending on preliminary lemmas) <strong>of</strong><br />

the fact that, in the figure <strong>of</strong> Euclid's proposition (see next<br />

page), the straight lines AL, BG, GE meet in a point. This<br />

last pro<strong>of</strong> is worth giving.<br />

First come the lemmas.<br />

(1) If in a triangle ABG a straight line DE be drawn<br />

parallel <strong>to</strong> the base BG cutting the sides AB, AC or those<br />

sides produced in D, E, and if F be the<br />

middle point <strong>of</strong> BG, then the straight line<br />

AF (produced if necessary) will also bisect<br />

DE.<br />

(HK is drawn through A parallel <strong>to</strong><br />

DE, and HDL, REM through D, E parallel<br />

<strong>to</strong> AF meeting the base in L, M respectively.<br />

Then the triangles ABF, AFC<br />

between the same parallels are equal. So are the triangles<br />

DBF, EFC. Therefore the differences, the triangles ADF,<br />

AEF, are equal and so therefore are the parallelograms HF,<br />

KF. Therefore LF = FM, or DG = GE.)<br />

(2) is the converse <strong>of</strong> Eucl. 1. 43. If a parallelogram is

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!