27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DIVISIONS OF FIGURES 339<br />

two opposite sides which the required straight line cuts are<br />

(a) parallel or (b) not parallel. In the first case (a) the<br />

problem reduces <strong>to</strong> drawing a straight line through E intersecting<br />

the parallel sides in points F, G such that BF+AG<br />

is equal <strong>to</strong> a given length. In the second case (b) where<br />

BG, AD are not parallel Heron supposes them <strong>to</strong> meet in H.<br />

The angle at H is then given, and the area ABU. It is then<br />

a question <strong>of</strong> cutting <strong>of</strong>f <strong>from</strong> a triangle with vertex H a<br />

triangle HFG <strong>of</strong> given area <strong>by</strong> a straight line drawn <strong>from</strong> E}<br />

which is again a problem in Apollonius's Cutting-ojf <strong>of</strong> an<br />

area. The auxiliary problem in case (a) is easily solved in<br />

<strong>II</strong>I. 16. Measure AH equal <strong>to</strong> the given length. Join BH<br />

and bisect it at M. Then EM meets BG, AD in points such<br />

that BF+ AG= the given length. For, <strong>by</strong> congruent triangles,<br />

BF = GH.<br />

The same problems are solved for the case <strong>of</strong> any polygon<br />

in <strong>II</strong>I. 14, 15.<br />

A sphere is then divided (<strong>II</strong>I. 17) in<strong>to</strong> segments<br />

such that their surfaces are in a given ratio, <strong>by</strong> means <strong>of</strong><br />

Archimedes, On the Sphere and Cylinder, <strong>II</strong>. 3, just as, in<br />

<strong>II</strong>I. 23, Prop. 4 <strong>of</strong> the same Book is used <strong>to</strong> divide a sphere<br />

in<strong>to</strong> segments having their volumes in a given ratio.<br />

<strong>II</strong>I. 18 is interesting because it recalls an ingenious proposition<br />

in Euclid's book On Divisions. Heron's problem is<br />

'<br />

To divide a given circle in<strong>to</strong> three equal parts <strong>by</strong> two straight<br />

z 2<br />

340 HERON OF ALEXANDRIA<br />

lines ', and he observes that, ' as the problem is clearly not<br />

rational, we shall, for practical convenience, make the division,<br />

as exactly as possible, in the following<br />

way.' AB is the side <strong>of</strong> an<br />

equilateral triangle inscribed in the<br />

circle. Let CD be the parallel<br />

diameter, the centre <strong>of</strong> the circle,<br />

and join A0, BO, AD, DB. Then<br />

shall the segment ABD be very<br />

nearly one-third <strong>of</strong> the circle.<br />

For,<br />

since AB is the side <strong>of</strong> an equilateral<br />

triangle in the circle, the<br />

sec<strong>to</strong>r OAEB is one-third <strong>of</strong> the<br />

circle. And the triangle A OB forming part <strong>of</strong> the sec<strong>to</strong>r<br />

is equal <strong>to</strong> the triangle ABB] therefore the segment AEB<br />

rplus the triangle ABD is equal <strong>to</strong> one-third <strong>of</strong> the circle,<br />

and the segment ABD only differs <strong>from</strong> this <strong>by</strong> the small<br />

segment on BD as base, which may be neglected. Euclid's<br />

proposition is <strong>to</strong> cut <strong>of</strong>f one-third (or any fraction) <strong>of</strong> a circle<br />

between two parallel chords (see vol. i, pp. 429-30).<br />

<strong>II</strong>I.<br />

19 finds a point D within any triangle ABC such that<br />

the triangles DBG, DOA, DAB are all equal ; and<br />

then Heron<br />

passes <strong>to</strong> the division <strong>of</strong> solid figures.<br />

The solid figures divided in a given ratio (besides the<br />

sphere) are the pyramid with base <strong>of</strong> any form (<strong>II</strong>I. 20),<br />

the cone (<strong>II</strong>I. 21) and the frustum <strong>of</strong> a cone (<strong>II</strong>I. 22), the<br />

cutting planes being parallel <strong>to</strong> the base in each case. These<br />

problems involve the extraction <strong>of</strong> the cube root <strong>of</strong> a number<br />

which is in general not an exact cube, and the point <strong>of</strong><br />

interest is Heron's method <strong>of</strong> approximating <strong>to</strong> the cube root<br />

in such a case. Take the case <strong>of</strong> the cone, and suppose that<br />

the portion <strong>to</strong> be cut <strong>of</strong>f at the <strong>to</strong>p is <strong>to</strong> the rest <strong>of</strong> the cone as<br />

m <strong>to</strong> n. We have <strong>to</strong> find the ratio in which the height or the<br />

edge is cut <strong>by</strong> the plane parallel <strong>to</strong> the base which cuts<br />

the cone in the given ratio. The volume <strong>of</strong> a cone being<br />

^irc 2 h, where c is the radius <strong>of</strong> the base and h the height,<br />

we have <strong>to</strong> find the height <strong>of</strong> the cone the volume <strong>of</strong> which<br />

is .kirc 2 h, and, as the height hf is <strong>to</strong> the radius c f <strong>of</strong><br />

m + 7b<br />

its base as h is <strong>to</strong> c, we have simply <strong>to</strong> find h! where

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!