27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DIVISIONS OF FIGURES 337<br />

should apparently have 8 J, since DC is immediately stated<br />

be 5J (not 6). That is, in solving the equation<br />

x 2 -14&' + 46§ = 0,<br />

which gives x — 7 ± V(2±), Heron apparently substituted 2 J or<br />

f for 2§, there<strong>by</strong> obtaining \\ as an approximation <strong>to</strong> the<br />

surd.<br />

(The lemma assumed in this proposition is easily proved.<br />

Let m : n be the ratio AF: FB = BD : DC = GE-.EA.<br />

Then AF — mc/(m + n), FB = nc/(m + n), GE — mb/(m + n),<br />

EA = nb/(m + ri), &c.<br />

Hence<br />

mn<br />

AAFE/AABC =<br />

'<br />

-aBDF/AABG = ACDE/AABG,<br />

(m + ny<br />

and the triangles AFE, BDF, GDE are equal.<br />

Pappus 1 has the proposition that the triangles A BG, DEF<br />

have the same centre <strong>of</strong> gravity.)<br />

Heron next shows how <strong>to</strong> divide a parallel-trapezium in<strong>to</strong><br />

two parts in a given ratio <strong>by</strong> a straight line (l) through the<br />

point <strong>of</strong> intersection <strong>of</strong> the non-parallel sides, (2) through a<br />

given point on one <strong>of</strong> the parallel sides, (3) parallel <strong>to</strong> the<br />

parallel sides, (4) through a point on one <strong>of</strong> the non-parallel<br />

sides (<strong>II</strong>I. 5-8). <strong>II</strong>I. 9 shows how <strong>to</strong> divide the area <strong>of</strong> a<br />

circle in<strong>to</strong> parts which have a given ratio <strong>by</strong> means <strong>of</strong> an<br />

inner circle with the same centre. For the problems beginning<br />

with <strong>II</strong>I. 10 Heron says that numerical calculation alone<br />

no longer suffices, but geometrical methods must be applied.<br />

Three problems are reduced <strong>to</strong> problems solved <strong>by</strong> Apollonius<br />

in his treatise On cutting <strong>of</strong>f an area. The first <strong>of</strong> these is<br />

<strong>II</strong>I. 10, <strong>to</strong> cut <strong>of</strong>f <strong>from</strong> the angle <strong>of</strong> a triangle a given<br />

proportion <strong>of</strong> the triangle <strong>by</strong> a straight line through a point<br />

on the opposite side produced. <strong>II</strong>I. 11. 12, 13 show how<br />

<strong>to</strong> cut any quadrilateral in<strong>to</strong> parts in a given ratio <strong>by</strong> a<br />

straight line through a point (1) on a side (a) dividing the<br />

side in the given ratio, (6) not so dividing it, (2) not on any<br />

side, (a) in the case where the quadrilateral is a trapezium,<br />

i.e. has two sides parallel, (b) in the case where it is not; the<br />

last case (b) is reduced (like <strong>II</strong>I. 10) <strong>to</strong> the ' cutting-<strong>of</strong>f <strong>of</strong> an<br />

1<br />

Pappus, viii, pp. 1034-8. Cf. pp. 430-2 post.<br />

1523 2 £<br />

<strong>to</strong><br />

338 HERON OF ALEXANDRIA<br />

area'. These propositions are ingenious and interesting.<br />

<strong>II</strong>I. 11 shall be given as a specimen.<br />

Given any quadrilateral ABCD and a point E on the side<br />

AD, <strong>to</strong> draw through E a straight line EF which shall cut<br />

the quadrilateral in<strong>to</strong> two parts in<br />

the ratio <strong>of</strong> AE <strong>to</strong> ED. (We omit<br />

the analysis.) Draw CG parallel<br />

<strong>to</strong> DA <strong>to</strong> meet AB produced in G.<br />

Join BE, and draw GH parallel<br />

<strong>to</strong> BE meeting BC in H.<br />

Join CE, EH, EG.<br />

Then AGBE = AHBE and, adding AABE <strong>to</strong> each, we have<br />

AAGE = (quadrilateral ABHE).<br />

Therefore (quadr. ABHE) : ACED = A GAE: ACED<br />

= AE:ED.<br />

But (quadr. ABHE) and ACED are parts <strong>of</strong> the quadrilateral,<br />

and they leave over only the triangle EHC.<br />

We have<br />

therefore only <strong>to</strong> divide A EHC in the same ratio AE-.ED <strong>by</strong><br />

the straight line EF. This is done <strong>by</strong> dividing HC at F in<br />

the ratio AE: ED and joining EF.<br />

The next proposition (<strong>II</strong>I. 12) is easily reduced <strong>to</strong> this.<br />

If AE : ED is not equal <strong>to</strong> the given ratio, let F divide AD<br />

in the given ratio, and through F<br />

draw FG dividing the quadrilateral<br />

in the given ratio (<strong>II</strong>I. 11).<br />

Join EG, and draw FH parallel<br />

<strong>to</strong> EG. Let FH meet BC in H,<br />

and join EH.<br />

Then is EH the required straight<br />

line through E dividing the quadrilateral<br />

in the given ratio.<br />

For AFGE = AHGE. Add <strong>to</strong> each (quadr. GEDC).<br />

Therefore (quadr. CGFD) = (quadr. CHED).<br />

Therefore EH divides the quadrilateral<br />

in the given ratio,<br />

just as FG does.<br />

The case (<strong>II</strong>I. 13) where E is not on a side <strong>of</strong> the quadrilateral<br />

[(2) above] takes two different forms according as the

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!