27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON DETERMINATE SECTION 181<br />

plete Theory <strong>of</strong> Involution. Pappus says that the separate<br />

cases were dealt with in which the given ratio was that <strong>of</strong><br />

either (1) the square <strong>of</strong> one abscissa measured <strong>from</strong> the<br />

required point or (2) the rectangle contained <strong>by</strong> two such<br />

abscissae <strong>to</strong> any one <strong>of</strong> the following:- (1) the square <strong>of</strong> one<br />

abscissa, (2) the rectangle contained <strong>by</strong> one abscissa and<br />

another separate line <strong>of</strong> given length independent <strong>of</strong> the<br />

position <strong>of</strong> the required point, (3) the rectangle contained <strong>by</strong><br />

two abscissae. We learn also that maxima and minima were<br />

investigated. From the lemmas, <strong>to</strong>o, we may draw other<br />

conclusions, e. g.<br />

(1) that, in the case where A = 1, or AP .OP = BP .DP,<br />

Apollonius used the relation BP .DP = AB . BO : AD . DO,<br />

(2) that Apollonius probably obtained a double point E <strong>of</strong> the<br />

involution determined <strong>by</strong> the point-pairs A, and B, D <strong>by</strong><br />

means <strong>of</strong> the relation<br />

AB.BC.AD. DC = BE 2 : DE\<br />

A possible application <strong>of</strong> the problem was the determination<br />

<strong>of</strong> the points <strong>of</strong> intersection <strong>of</strong><br />

the given straight line with a<br />

conic determined as a four-line locus, since A, B, C, D are in<br />

fact the points <strong>of</strong> intersection <strong>of</strong> the given straight line with<br />

the four lines <strong>to</strong> which the locus has reference.<br />

(S) On Contacts or Ta agencies {kirafyai), two Books.<br />

Pappus again comprehends in one enunciation the varieties<br />

<strong>of</strong> problems dealt with in the treatise, which we may reproduce<br />

as follows : Given three things, each <strong>of</strong> which may be<br />

either a 'point, a straight line or a circle, <strong>to</strong> draw a circle<br />

which shall pass through each <strong>of</strong> the given points (so far as it<br />

is points that are given) and <strong>to</strong>uch the straight lines or<br />

circles. 1 The possibilities as regards the different data are<br />

ten. We may have any one <strong>of</strong> the following: (1) three<br />

points, (2) three straight lines, (3) two points and a straight<br />

line, (4) two straight lines and a point, (5) two points and<br />

a circle, (6) two circles and a point, (7) two straight lines and<br />

182 APOLLONIUS OF PERGA<br />

a circle, (8) two circles and a straight line, (9) a point, a circle<br />

and a straight line, (10) three circles. Of these varieties the<br />

first two are treated in Eucl. IV ; Book I <strong>of</strong> Apollonius's<br />

treatise treated <strong>of</strong> (3), (4), (5), (6), (8), (9), while (7), the case <strong>of</strong><br />

two straight lines and a circle, and (10), that <strong>of</strong> the three<br />

circles, occupied the whole <strong>of</strong> Book <strong>II</strong>.<br />

The last problem (10), where the data are three circles,<br />

has exercised the ingenuity <strong>of</strong> many distinguished geometers,<br />

including Vieta and New<strong>to</strong>n. Vieta (1540-1603) set the problem<br />

<strong>to</strong> Adrianus Komanus (van Roomen, 1561-1615) who<br />

solved it <strong>by</strong> means <strong>of</strong> a hyperbola. Vieta was not satisfied<br />

with this, and rejoined with his Apollonius<br />

r Gallus (1600) in<br />

which he solved the problem <strong>by</strong> plane methods. A solution<br />

<strong>of</strong> the same kind is given <strong>by</strong> New<strong>to</strong>n in his Arithmetica<br />

Universalis (Prob. xlvii), while an equivalent problem is<br />

solved <strong>by</strong> means <strong>of</strong> two hyperbolas in the Principia, Lemma<br />

xvi. The problem is quite capable <strong>of</strong> a ' plane ' solution, and,<br />

as a matter <strong>of</strong> fact, it is not difficult <strong>to</strong> res<strong>to</strong>re the actual<br />

solution <strong>of</strong> Apollonius (which <strong>of</strong> course used the 'plane' method<br />

depending on the straight line and circle only), b}^ means <strong>of</strong><br />

the lemmas given <strong>by</strong> Pappus. Three things are necessary <strong>to</strong><br />

the solution. (1) A proposition, used <strong>by</strong> Pappus elsewhere 1<br />

and easily proved, that, if two circles <strong>to</strong>uch internally or<br />

externally, any straight line through the point <strong>of</strong> contact<br />

divides the circles in<strong>to</strong> segments respectively similar. (2) The<br />

proposition that, given three circles, their six centres <strong>of</strong> similitude<br />

(external and internal) lie three <strong>by</strong> three on four straight<br />

lines. This proposition, though not proved in Pappus, was<br />

certainly known <strong>to</strong> the ancient geometers; it is even possible<br />

that Pappus omitted <strong>to</strong> prove it because it was actually proved<br />

<strong>by</strong> Apollonius in his treatise. (3) An auxiliary problem solved<br />

<strong>by</strong> Pappus and enunciated <strong>by</strong> him as follows. 2 Given a circle<br />

ABC, and given three points D, E, F in a straight line, <strong>to</strong><br />

inflect (the broken line) DAE (<strong>to</strong> the circle) so as <strong>to</strong> make BG<br />

in a straight line with CF; in other words, <strong>to</strong> inscribe in the<br />

circle a triangle the sides <strong>of</strong> which, when produced, pass<br />

respectively through three given points lying in a straight<br />

line. This problem is interesting as a typical example <strong>of</strong> the<br />

ancient analysis followed <strong>by</strong> synthesis. Suppose the problem<br />

1<br />

Pappus, vii, p. 644, 25-8.<br />

1<br />

Pappus, iv, pp. 194-6. 2 lb. vii, p.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!