27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ON SEMI-REGULAR POLYHEDRA 99<br />

angular, but not similar, polygons ; those discovered <strong>by</strong><br />

Archimedes were 13 in number. If we for convenience<br />

designate a polyhedron contained <strong>by</strong> m regular polygons<br />

<strong>of</strong> oc sides, n regular polygons <strong>of</strong> /? sides, &c, <strong>by</strong> (m a<br />

, %...),<br />

the thirteen Archimedean polyhedra, which we will denote <strong>by</strong><br />

jF}, P 2<br />

...P IZ<br />

,<br />

are as follows:<br />

Figure with 8 faces: P x<br />

= (4,, 4 G<br />

).<br />

Figures with 14 faces: P 2<br />

= (8 3<br />

, 6 4 ), P 3<br />

= (6 4<br />

, 8 6 ),<br />

P 4<br />

= (83J 6 8 ).<br />

Figures with 26 faces : P 5<br />

= (8 3<br />

, 18 4 ), P 6<br />

= (12 4<br />

,<br />

8 6<br />

, 6 8 ).<br />

Figures with 32 faces: P 7<br />

= (20 3<br />

, 12 5 ), P 8<br />

= (12 5<br />

, 20 6 ),<br />

P 9<br />

= (20lf 12 10 ).<br />

Figure with 38 faces: P 10<br />

= (32 3<br />

, 6 4 ).<br />

Figures with 62 faces: P n = (20 3<br />

, 30 4<br />

,<br />

12 5 ),<br />

P ]2<br />

EE(30 4<br />

,20 G<br />

,12 10 ).<br />

Figure with 92 faces: P 13<br />

= (80 3<br />

, 12 5 ).<br />

Kepler 1 showed how these figures can be obtained. A<br />

method <strong>of</strong> obtaining some <strong>of</strong> them is indicated in a fragment<br />

<strong>of</strong> a scholium <strong>to</strong> the Vatican MS. <strong>of</strong> Pappus. If a solid<br />

angle <strong>of</strong> one <strong>of</strong> the regular solids be cut <strong>of</strong>f symmetrically <strong>by</strong><br />

a plane, i.e. in such a way that the plane cuts <strong>of</strong>f the same<br />

length <strong>from</strong> each <strong>of</strong> the edges meeting at the angle, the<br />

section is a regular polygon which is a triangle, square or<br />

pentagon according as the solid angle is formed <strong>of</strong> three, four,<br />

or five plane angles. If certain equal portions be so cut <strong>of</strong>f<br />

<strong>from</strong> all the solid angles respectively, they will leave regular<br />

polygons inscribed in the faces <strong>of</strong> the solid ; this happens<br />

(A) when the cutting planes bisect the sides <strong>of</strong> the faces and<br />

so leave in each face a polygon <strong>of</strong> the same kind, and (B) when<br />

the cutting planes cut <strong>of</strong>f a smaller portion <strong>from</strong> each angle in<br />

such a way that a regular polygon is left in each face which<br />

has double the number <strong>of</strong> sides (as when we make, say, an<br />

octagon out <strong>of</strong> a square <strong>by</strong> cutting <strong>of</strong>f the necessary portions,<br />

1<br />

Kepler, Harmonice mundi in Opera (1864), v, pp. 123-6.<br />

H 2<br />

100 ARCHIMEDES<br />

symmetrically, <strong>from</strong> the corners). We have seen that, according<br />

<strong>to</strong> Heron, two <strong>of</strong> the semi-regular solids had already been<br />

discovered <strong>by</strong> Pla<strong>to</strong>, and this would doubtless be his method.<br />

The methods (A) and (B) applied <strong>to</strong> the five regular solids<br />

give the following out <strong>of</strong> the 13 semi-regular solids. We<br />

obtain (1) <strong>from</strong> the tetrahedron, P 1<br />

<strong>by</strong> cutting <strong>of</strong>f angles<br />

so as <strong>to</strong> leave hexagons in the faces ; (2) <strong>from</strong> the cube, P 2<br />

<strong>by</strong><br />

leaving squares, and P 4<br />

<strong>by</strong> leaving octagons, in the faces<br />

(3) <strong>from</strong> the octahedron, P 2<br />

<strong>by</strong> leaving triangles, and P 3<br />

<strong>by</strong><br />

leaving hexagons, in the faces ; (4) <strong>from</strong> the icosahedron,<br />

Bj <strong>by</strong> leaving triangles, and P g<br />

<strong>by</strong> leaving hexagons, in the<br />

faces; (5) <strong>from</strong> the dodecahedron, P 7<br />

<strong>by</strong> leaving pentagons,<br />

and P 9<br />

<strong>by</strong> leaving decagons in the faces.<br />

Of the remaining six, four are obtained <strong>by</strong> cutting <strong>of</strong>f all<br />

the edges symmetrically and equally <strong>by</strong> planes parallel <strong>to</strong> the<br />

edges, and then cutting <strong>of</strong>f angles. Take first the cube.<br />

(1) Cut <strong>of</strong>f <strong>from</strong> each four parallel edges portions which leave<br />

an octagon as the section <strong>of</strong> the figure perpendicular <strong>to</strong> the<br />

edges ; then cut <strong>of</strong>f equilateral triangles <strong>from</strong> the corners<br />

(see Fig. 1)<br />

; this gives P 5<br />

containing 8 equilateral triangles<br />

and 18 squares. (P 5<br />

is also obtained <strong>by</strong> bisecting all the<br />

edges <strong>of</strong> P 2<br />

and cutting <strong>of</strong>f corners.) (2) Cut <strong>of</strong>f <strong>from</strong> the<br />

edges <strong>of</strong> the cube a smaller portion so as <strong>to</strong> leave in each<br />

face a square such that the octagon described in it has its<br />

side equal <strong>to</strong> the breadth <strong>of</strong> the section in which each edge is<br />

cut; then cut <strong>of</strong>f hexagons <strong>from</strong> each angle (see Fig. 2); this<br />

""r "jr<br />

Fig. 1. Fig. 2.<br />

gives 6 octagons in the faces, 12<br />

""<br />

\*Y~<br />

•<br />

! l—<br />

,<br />

squares under the edges and<br />

exactly<br />

8 hexagons at the corners; that is, we have P 6<br />

. An

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!