27.06.2018 Views

A history of Greek mathematics Vol.II from Aristarchus to Diophantus by Heath, Thomas Little, Sir, 1921

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine) ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!! ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

MACEDONIA is GREECE and will always be GREECE- (if they are desperate to steal a name, Monkeydonkeys suits them just fine)

ΚΑΤΩ Η ΣΥΓΚΥΒΕΡΝΗΣΗ ΤΩΝ ΠΡΟΔΟΤΩΝ!!!

ΦΕΚ,ΚΚΕ,ΚΝΕ,ΚΟΜΜΟΥΝΙΣΜΟΣ,ΣΥΡΙΖΑ,ΠΑΣΟΚ,ΝΕΑ ΔΗΜΟΚΡΑΤΙΑ,ΕΓΚΛΗΜΑΤΑ,ΔΑΠ-ΝΔΦΚ, MACEDONIA,ΣΥΜΜΟΡΙΤΟΠΟΛΕΜΟΣ,ΠΡΟΣΦΟΡΕΣ,ΥΠΟΥΡΓΕΙΟ,ΕΝΟΠΛΕΣ ΔΥΝΑΜΕΙΣ,ΣΤΡΑΤΟΣ, ΑΕΡΟΠΟΡΙΑ,ΑΣΤΥΝΟΜΙΑ,ΔΗΜΑΡΧΕΙΟ,ΝΟΜΑΡΧΙΑ,ΠΑΝΕΠΙΣΤΗΜΙΟ,ΛΟΓΟΤΕΧΝΙΑ,ΔΗΜΟΣ,LIFO,ΛΑΡΙΣΑ, ΠΕΡΙΦΕΡΕΙΑ,ΕΚΚΛΗΣΙΑ,ΟΝΝΕΔ,ΜΟΝΗ,ΠΑΤΡΙΑΡΧΕΙΟ,ΜΕΣΗ ΕΚΠΑΙΔΕΥΣΗ,ΙΑΤΡΙΚΗ,ΟΛΜΕ,ΑΕΚ,ΠΑΟΚ,ΦΙΛΟΛΟΓΙΚΑ,ΝΟΜΟΘΕΣΙΑ,ΔΙΚΗΓΟΡΙΚΟΣ,ΕΠΙΠΛΟ, ΣΥΜΒΟΛΑΙΟΓΡΑΦΙΚΟΣ,ΕΛΛΗΝΙΚΑ,ΜΑΘΗΜΑΤΙΚΑ,ΝΕΟΛΑΙΑ,ΟΙΚΟΝΟΜΙΚΑ,ΙΣΤΟΡΙΑ,ΙΣΤΟΡΙΚΑ,ΑΥΓΗ,ΤΑ ΝΕΑ,ΕΘΝΟΣ,ΣΟΣΙΑΛΙΣΜΟΣ,LEFT,ΕΦΗΜΕΡΙΔΑ,ΚΟΚΚΙΝΟ,ATHENS VOICE,ΧΡΗΜΑ,ΟΙΚΟΝΟΜΙΑ,ΕΝΕΡΓΕΙΑ, ΡΑΤΣΙΣΜΟΣ,ΠΡΟΣΦΥΓΕΣ,GREECE,ΚΟΣΜΟΣ,ΜΑΓΕΙΡΙΚΗ,ΣΥΝΤΑΓΕΣ,ΕΛΛΗΝΙΣΜΟΣ,ΕΛΛΑΔΑ, ΕΜΦΥΛΙΟΣ,ΤΗΛΕΟΡΑΣΗ,ΕΓΚΥΚΛΙΟΣ,ΡΑΔΙΟΦΩΝΟ,ΓΥΜΝΑΣΤΙΚΗ,ΑΓΡΟΤΙΚΗ,ΟΛΥΜΠΙΑΚΟΣ, ΜΥΤΙΛΗΝΗ,ΧΙΟΣ,ΣΑΜΟΣ,ΠΑΤΡΙΔΑ,ΒΙΒΛΙΟ,ΕΡΕΥΝΑ,ΠΟΛΙΤΙΚΗ,ΚΥΝΗΓΕΤΙΚΑ,ΚΥΝΗΓΙ,ΘΡΙΛΕΡ, ΠΕΡΙΟΔΙΚΟ,ΤΕΥΧΟΣ,ΜΥΘΙΣΤΟΡΗΜΑ,ΑΔΩΝΙΣ ΓΕΩΡΓΙΑΔΗΣ,GEORGIADIS,ΦΑΝΤΑΣΤΙΚΕΣ ΙΣΤΟΡΙΕΣ, ΑΣΤΥΝΟΜΙΚΑ,ΦΙΛΟΣΟΦΙΚΗ,ΦΙΛΟΣΟΦΙΚΑ,ΙΚΕΑ,ΜΑΚΕΔΟΝΙΑ,ΑΤΤΙΚΗ,ΘΡΑΚΗ,ΘΕΣΣΑΛΟΝΙΚΗ,ΠΑΤΡΑ, ΙΟΝΙΟ,ΚΕΡΚΥΡΑ,ΚΩΣ,ΡΟΔΟΣ,ΚΑΒΑΛΑ,ΜΟΔΑ,ΔΡΑΜΑ,ΣΕΡΡΕΣ,ΕΥΡΥΤΑΝΙΑ,ΠΑΡΓΑ,ΚΕΦΑΛΟΝΙΑ, ΙΩΑΝΝΙΝΑ,ΛΕΥΚΑΔΑ,ΣΠΑΡΤΗ,ΠΑΞΟΙ

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

INDETERMINATE EQUATIONS 467<br />

(ft) when C is positive and a square, say c 2 ;<br />

in this case <strong>Diophantus</strong> puts Ax 2 + c 2 — (mx±c) 2 , and obtains<br />

2mc<br />

x =<br />

-A +<br />

m'<br />

(y) When one solution is known, any number <strong>of</strong> other<br />

solutions can be found. This is stated in the Lemma <strong>to</strong><br />

VI. 15. It would be true not only <strong>of</strong> the cases ±Ax 2 + C = y<br />

2<br />

but <strong>of</strong> the general case Ax 2 + Bx + C = y<br />

2<br />

. <strong>Diophantus</strong>, however,<br />

only states it <strong>of</strong> the case Ax 2 — C — y<br />

2<br />

His method <strong>of</strong> finding other (greater)<br />

.<br />

values <strong>of</strong> x satisfying<br />

the equation when one (x ) is known is as follows. If<br />

A x 2 -r C = q<br />

2<br />

, he substitutes in the original equation (x + x)<br />

for x and (q<br />

— kx) for y, where k is some integer.<br />

Then, since A (x + x) 2 — C = (q<br />

— kx) 2 , while Ax 2 — C = q<br />

2<br />

it follows <strong>by</strong> subtraction that<br />

whence<br />

2x(Ax + kq) — x 2 (k 2 — A),<br />

x — 2 (Ax + kq) / (k 2 — A),<br />

and the new value <strong>of</strong> x is x -\<br />

jo° a<br />

Form Ax 2 — c<br />

2<br />

= y<br />

2<br />

.<br />

<strong>Diophantus</strong> says (VI. 14) that a rational solution <strong>of</strong> this<br />

case is only possible when A is the sum <strong>of</strong> two squares.<br />

[In fact, if x = p/q satisfies the equation, and Ax 2 — c<br />

2<br />

= k 2 t<br />

we have Ap 2 = c 2 q 2 + k 2 q 2 ,<br />

'<br />

,<br />

,<br />

468 DIOPHANTUS OF ALEXANDRIA<br />

substituting in the original equation 1 + x for x and (q<br />

— kx)<br />

for y, where k is some integer.<br />

3. Form Ax 2 + Bx + C=y 2 .<br />

This can be reduced <strong>to</strong> the form in which the second term is<br />

wanting <strong>by</strong> replacing x <strong>by</strong> z — —j<br />

•<br />

2 XL<br />

<strong>Diophantus</strong>, however, treats this case separately and less<br />

fully. According <strong>to</strong> him, a rational solution <strong>of</strong> the equation<br />

Ax' 1 + Bx +C = y<br />

2<br />

is only possible<br />

(a) when A is positive and a square, say a 2 ;<br />

(/?) when C is positive and a square, say c 2 ;<br />

(y)<br />

when ^B 2 — AC is positive and a square.<br />

In case (a) y is put equal <strong>to</strong> (ax — m), and in case (/3) y is put<br />

equal <strong>to</strong> (mx — c).<br />

Case (y) is not expressly enunciated, but occurs, as it<br />

were, accidentally (IV. 31). The equation <strong>to</strong> be solved is<br />

3 x + 1 8 — x 2 = y<br />

2<br />

. <strong>Diophantus</strong> first assumes 3 x + 1 8 — x 2 = 4 x 2 ,<br />

which gives the quadratic 3^+18 = 5 sc 2 ;<br />

but this 'is not<br />

rational '. Therefore the assumption <strong>of</strong> 4 x 2 for y 2 will not do,<br />

'<br />

and we must find a square [<strong>to</strong> replace 4] such that 1 8 times<br />

(this square + 1 ) 4- (f )<br />

2<br />

may be a square '. The auxiliary<br />

equation is therefore 18(m 2 2<br />

+ 1) + § = y<br />

, or 7 2 m 2 + 81= a<br />

square, and <strong>Diophantus</strong> assumes 72 m 2 + 8 1 = (8 m + 9)<br />

2<br />

, whence<br />

m= 18. Then, assuming 3 x + 18 — x 2 = (1 8) 2 ^ 2 , he obtains the<br />

equation 325 2 — 3x— 18 = 0, whence x — /2t> ^na^ is > 2V<br />

(2) Double equation.<br />

Form Ax 2 + C = y<br />

2<br />

<strong>Diophantus</strong> proves in the<br />

.<br />

Lemma <strong>to</strong> VI. 12 that this equation<br />

has an infinite number <strong>of</strong> solutions when A + C is a square,<br />

i. e. in the particular case where x = 1 is a solution. (He does<br />

not, however, always bear this in mind, for in <strong>II</strong>I. 10 he<br />

regards the equation 52x 2 2<br />

+12 = y as impossible though<br />

52 + 12 = 64 is a square, just as, in <strong>II</strong>I. 11, 266a? 2 - 10 = y<br />

2<br />

is regarded as impossible.)<br />

Suppose that A + C = q<br />

2<br />

the equation is then solved <strong>by</strong><br />

;<br />

Hh 2<br />

The <strong>Greek</strong> term is SLTrXoicroT-qs, SlttXtj IcroT'qs or SlttXyj io-cdctis.<br />

Two different functions <strong>of</strong> the unknown have <strong>to</strong> be made<br />

simultaneously squares. The general case is <strong>to</strong> solve in<br />

rational<br />

numbers the equations<br />

mx 2 + oc x + a — u 2 j<br />

nx 2 -\- fix+ b = w 2 )<br />

The necessary preliminary condition is<br />

that each <strong>of</strong> the two<br />

expressions can be made a square. This is always possible<br />

when the first term (in x 2 ) is wanting. We take this simplest<br />

case first.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!