28.12.2012 Views

Violation in Mixing

Violation in Mixing

Violation in Mixing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7.7 The maximum likelihood analysis 179<br />

Events / 0.0022375 GeV/c 2<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

38.32 / 33<br />

P1 89.69 2.623<br />

P2 1482. 40.70<br />

P3 5.280 0.<br />

P4 0.2624E-02 0.6195E-04<br />

0<br />

5.2 5.22 5.24 5.26 5.28 5.3<br />

Energy substituted mass dataset:mes<br />

Nent = 11938<br />

400<br />

Mean = 5.24<br />

RMS = 0.02419<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

c = -21.09 ± 1.02<br />

Energy substituted mass (GeV/c 2)<br />

0<br />

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28<br />

Events / 0.0022375 GeV/c 2<br />

250<br />

200<br />

150<br />

100<br />

50<br />

47.27 / 32<br />

P1 21.61 1.292<br />

P2 655.4 26.45<br />

P3 5.280 0.<br />

P4 0.2609E-02 0.8669E-04<br />

0<br />

5.2 5.22 5.24 5.26 5.28 5.3<br />

mES pi+<br />

Energy substituted mass dataset:mes<br />

Nent = 5963<br />

Mean = 5.24<br />

200<br />

RMS = 0.02426<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

c = -20.93 ± 1.44<br />

Energy substituted mass (GeV/c 2)<br />

0<br />

5.2 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28<br />

Figure 7-5. Top plots: distributions of Ñ�Ë for � � � � decays <strong>in</strong> Run 1 (left) and Run 2 (right).<br />

Bottom plots: distributions of Ñ�Ë for Run 1 (left) and Run 2 (right) on-resonance data <strong>in</strong> the region � �<br />

�¡�� � �� ��Î.<br />

The signal Fisher discrim<strong>in</strong>ant distribution is obta<strong>in</strong>ed from signal � � Monte Carlo and cross-checked<br />

with the � � control sample. After tighten<strong>in</strong>g the cut on Ó× �Ë relative to the branch<strong>in</strong>g fraction analysis<br />

we f<strong>in</strong>d that the signal Fisher shape is a pure Gaussian. Top plots <strong>in</strong> Fig. 7-7 shows the comb<strong>in</strong>ed Run 1 + 2<br />

sample and the signal Monte Carlo. We use the latter distribution for both Run 1 and Run 2, with the � �<br />

sample used to estimate the systematic error. The background Fisher shape is the usual double Gaussian<br />

whose parameters are left float<strong>in</strong>g <strong>in</strong> the fit. Bottom plots <strong>in</strong> Fig. 7-7 shows the Fisher distribution <strong>in</strong> the<br />

side-band region. For the background common parameters for the entire dataset are floated <strong>in</strong> the fit.<br />

The � ��Ö�Ò�ÓÚ angle pulls for pions and kaons are determ<strong>in</strong>ed <strong>in</strong> a high-statistics data sample of � £ � � �,<br />

� � � decays, where the same PDFs are used for signal and background. We also use the same<br />

parameterization for positive and negative tracks. The pulls are def<strong>in</strong>ed as � � �ÜÔ Ó«×�Ø ��� ,<br />

where � �ÜÔ is the expected angle for a pion or kaon with the given momentum (corrected for energy<br />

loss) and the offsets and resolutions depend on track polar angle. Left plots <strong>in</strong> Fig. 7-8 show the offset<br />

ANALYSIS OF THE TIME-DEPENDENT �È -VIOLATING ASYMMETRY IN � � � � DECAYS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!