10.07.2015 Views

Revista (format .pdf, 2.3 MB) - RECREAÅ¢II MATEMATICE

Revista (format .pdf, 2.3 MB) - RECREAÅ¢II MATEMATICE

Revista (format .pdf, 2.3 MB) - RECREAÅ¢II MATEMATICE

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pentru x = π 2 ∈ (−π, π), avem: S nπ2=2 nPk=1(−1) k+1 sin k π 2. Aplicând teoremaklui Dirichlet, deducem că lim S n(x) = f( π ), deci limn→∞ 2 S 2n(x) = πn→∞ 2 , adică(6) limn→∞1 − 1 3 + 1 5 − 1 7 + · · · + (−1)n−12n − 1= π 4 .II. Fie funcţia pară f : (−π, π) → R, f(x) = x 2 . În acest caz, ţinând seamade relaţiile (4), obţinem: b k = 0, k ∈ N ∗ , a 0 =πZπ2 x 2 dx = 2π2 şi a k =32πZπ0x 2 cos kxdx = 2x2kπsin kxπ−kπZπ 400x sin kxdx = 4xk 2 πkcos kx0cos kxπ0− 4kπZπ0cos kxdxk= (−1) k 4 k 2 , k ∈ N. Aşadar, S n(x) = π23 + 4 nPk=1(−1)k 2 .a) Pentru x = 0 ∈ (−π, π), obţinem S n (0) = π23 + 4 nPk=1(−1) kk 2 . Conform teoremeilui Dirichlet, lim S n(0) = f(0), cu alte cuvinten→∞(7) lim −n→∞1 1 2 2 + 1 3 2 − 1 =4 2 + · · · + (−1)n−1 π2n 2 12 .b) Pentru x = π obţinem S n (π) = π23 + 4 nPk=11. Aplicând teorema lui Dirichlet,k2 deducem că lim S n(π) = 1 [f(−π + 0) + f(π − 0)], decin→∞ 2(8) limn→∞1 + 1 2 2 + 1 3 2 + 1 4 2 + · · · + 1 π2n2‹= 6 .Observaţie. Coroborând relaţiile (7) şi (8), deducem că(9) lim 1 + 1n→∞ 3 2 + 1 5 2 + 1 7 2 + · · · + 1 π2(2n − 1) 2‹=8 .III. Fie funcţia f z : (−π, π) → R, f z (x) = cos zx, derivabilă, cu derivata continuăşi care este pară. Avem: b k = 0, k ∈ N ∗ , a 0 =πZπ2 2 sin πzcos zxdx = şiπza k =πZπ2 cos zx cos kxdx = 1 [cos(z − k)x + cos(z + k)x] dx =0πZπ0=π•sin(z 1 − k)x sin(z + k)x˜π2z sin(z + k)π+ =z − k z + kπ (z 2 − k 2 , k ∈ N ∗ .)00Aşadar, S n (x, z) =sin πzπz+ 2zπnPk=1sin(z + k)π cos kxz 2 − k 2 .39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!