03.08.2013 Views

Self-assembled Transition Metal Coordination Frameworks of ...

Self-assembled Transition Metal Coordination Frameworks of ...

Self-assembled Transition Metal Coordination Frameworks of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 5<br />

To fit and interpret the magnetic susceptibility data <strong>of</strong> complexes, first it is<br />

necessary to find all possible magnetic pathways in the structures. The complexes,<br />

except 20, are expected to be molecular square grids, as would be expected, as in the<br />

case <strong>of</strong> Ni(II) square grids discussed in Chapter 3. So the Mn(II) compounds 19, 21,<br />

22 and 23 are modeled, with a single coupling constant J that takes into account all<br />

exchange pathways to be equal, by considering the appropriate Heisenberg exchange<br />

Hamiltonian for D4,, [2 >< 2] grid as,<br />

Ii! = —2J($‘, -5*‘, +§, -S‘, +.§, -§4 +.§, -.524) (1)<br />

The corresponding eigenvalues are then obtained using the conventional spin­<br />

vector coupling model [44] and are given [45] by,<br />

E(S',S|3,S24) = 2J[S'(S'+1) — SB (SB +1) — S24 (S24 + 1)] (2)<br />

For Mn(II) molecular squares S I , S 2 , S 3 , S 4 = 52- . There are 146 spin states as<br />

given<br />

E P : 2 I . I :<br />

below,<br />

- : _ y : 1 5 1 : E > 1 V . \ I Y 1 ' , _ g , E : 2 E . : 1 s '-<br />

51<br />

, I|<br />

'2<br />

: - ­'<br />

'<br />

,<br />

:<br />

..........................................................................................<br />

E I<br />

.,_, .........................<br />

I<br />

..) ...................<br />

E<br />

., ......................... .._,<br />

:<br />

......................... ., E......................... .7 ........................ ..r ......................... ., ......................... .,_, ............................................... .1 ..................... .5<br />

Punuuuuuuunuu,H"“""_"""""uuuuuunnnnnuunnnnunuu..“"""".“H“_""..nHn"""“nnx“~ ".H""““n"..""""""""“n“";HU“"“""“"““"n¢“"“““n“n"nm_ “““n_“n“n"“"“;_“nnuuunuunu..________"_"_<br />

§No.<strong>of</strong>spinstates§ 1 1 4 6 10 15 21 24 24<br />

=“H.h,H."H.“d“""""““"”“"n"..h"Hu“““"““"u"““nn"n """“““_""__"".""""""“H".L"uh"""""“"n“."“"""""“"“uu“;Hnnnnnhnnnm".“"""""""“_““ ........_....._....-....l-u-.-..............._... A..........................4..-...-.....-....-.-S...".........-.......¢<br />

The allowed values are then substituted in to the modified van Vleck equation,<br />

N 2 2 Zs" s'+1 2s'+1 *”“'>”" N 2 2s s+1<br />

ZM Z fig ( )( _E()§W (1_p)+ fig ( )/>+m,<br />

3k(T-6)) Z(2s+1)e 3kT<br />

(4)<br />

The procedure <strong>of</strong> generating the exchange equation for such large systems<br />

presents a somewhat daunting task in the case <strong>of</strong> Mn(II) (S = 5/2) and so we used<br />

MAGMUN4.l [46] s<strong>of</strong>tware package for calculation <strong>of</strong> the spin state energy spectrum<br />

for a cluster, and substitution into the van Vleck equation. Then, fitting <strong>of</strong> variable<br />

temperature magnetic data were done to an exchange expression, eqn. (4), using the<br />

same program MAGMUN4.l.<br />

220

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!