05.12.2012 Views

Inhaltsverzeichnis - Mathematisches Institut der Universität zu Köln

Inhaltsverzeichnis - Mathematisches Institut der Universität zu Köln

Inhaltsverzeichnis - Mathematisches Institut der Universität zu Köln

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DMV Tagung 2011 - <strong>Köln</strong>, 19. - 22. September<br />

Claus Fieker<br />

University of Sydney<br />

Working in the multiplicative group of a number field<br />

The multiplicative group of a number field is rather large and difficult to work in on a computer: we clearly<br />

do not have a finitely generated Z-module structure that can be used. Therefore to use the multiplicative<br />

group in applications, one frequently starts by creating a finitely generated sub-group that is large enough<br />

to contain a solution but small enough to allow effective manipulation. Apart from the finite generation,<br />

a second problem comes from the (neccessary) use of logarithms to linearize the structure, it implies<br />

that the linear structure is only approximated and not exactly represented. In this context there are a few<br />

important problems to solve:<br />

- given a finite number of non-zero number field elements, can we compute the Z-module structure?<br />

- given a tentative sub-group, can we enlarge it systematically?<br />

- given a particular problem, can we find an effective set of generators for the part that we are interested<br />

in?<br />

- given an element in the finitely generated group, can we find nicer representatives?<br />

Examples here are the computation of the class group, S-unit group, solution of norm equations, splitting<br />

of co-cycles in cohomology groups and p-Selmer group computations. I will indicate algorithmic solutions<br />

to some of the problems, classical solutions as well as new ones based on p-adic techniques.<br />

Max Horn<br />

Technische <strong>Universität</strong> Braunschweig<br />

Polyzyklische Quotienten und nicht-kommutative Gröbner-Basen<br />

Wir beschreiben, wie man polyzyklische Quotienten von (endlich) präsentierten Gruppen algorithmisch<br />

berechnen kann, und stellen unsere Implementierung in GAP vor. Zentral dafür sind Methoden, um<br />

verallgemeinerte Gröbner-Basen in integralen Gruppenringen von polyzyklischen Gruppen <strong>zu</strong> berechnen;<br />

diese Ringe sind dabei im allgemeinen nicht kommutativ. Zum Ende geben wir ein paar Beispiele und<br />

weitere Anwendungen dieser Gröbnerbasenmethoden an.<br />

Sebastian Jambor<br />

RWTH Aachen<br />

An L3-U3-quotient algorithm<br />

Given a finitely presented group G on two generators, the L3-U3-quotient algorithm enumerates all normal<br />

subgroups N � G such that G/N is isomorphic to PSL(3,q) or PSU(3,q). This is done simultaneously<br />

for any q, and even works if G has infinitely many factor groups isomorphic to PSL(3,q) or PSU(3,q) (in<br />

particular, this gives a proof that G is infinite, in this case).<br />

The algorithm uses methods from representation theory and from commutative algebra. In the talk, I will<br />

present some of the ideas of the algorithm and give a demonstration with several examples.<br />

101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!