05.12.2012 Views

Inhaltsverzeichnis - Mathematisches Institut der Universität zu Köln

Inhaltsverzeichnis - Mathematisches Institut der Universität zu Köln

Inhaltsverzeichnis - Mathematisches Institut der Universität zu Köln

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DMV Tagung 2011 - <strong>Köln</strong>, 19. - 22. September<br />

Tassilo Küpper<br />

<strong>Universität</strong> <strong>zu</strong> <strong>Köln</strong><br />

Bells as impacting system “Die Kaiserglocke im <strong>Köln</strong>er Dom”<br />

Ringing bells provide a beautiful example for a dynamical system where impacts occur in a natural way.<br />

Bells consi<strong>der</strong>ed as a dynamical system give rise to several interesting mathematical problems. Starting<br />

with the fascinating story of the famous emperor’s bell in the Cathedral of Cologne who could not be forced<br />

to ring appropriately and for that reason had been nicknamed “Die Stumme”. We provide a dynamical<br />

system approach to investigate motions of a bells inducting impacts.<br />

Literatur<br />

Köker, S. (2009). Zur Dynamik des Glockenläutens. Diplomarbeit. <strong>Universität</strong> <strong>zu</strong> <strong>Köln</strong>. 2009.<br />

Köker, S., Küpper, T. (2009/2010). Die Kaiserglocke als Dynamisches System. Jahrbuch für Glockenkunde<br />

20. - 21.<br />

Dudtschenko K.(2011). Zur Glockendynamik. Simulation und Visualisierung. Staatsexamensarbeit. <strong>Universität</strong><br />

<strong>zu</strong> <strong>Köln</strong>.<br />

Küpper, K., Hosham, H. A., Dudtschenko, K.(2011). The dynamics of bells as impacting system, to appear<br />

in J. Mech. Eng. Sci..<br />

Veltmann, W. (1876). Über die Bewegung einer Glocke. Dinglers Polytechnisches Journal, 22, 481-494.<br />

Veltmann, W. (1880). Die <strong>Köln</strong>er Kaiserglocke. Enthüllungen über die Art und Weise wie <strong>der</strong> <strong>Köln</strong>er Dom<br />

<strong>zu</strong> einer mißratenen Glocke gekommen ist. Bonn.<br />

Tassilo Küpper<br />

<strong>Universität</strong> <strong>zu</strong> <strong>Köln</strong><br />

Bifurcation of periodic orbits for non-smooth systems<br />

For smooth dynamical systems Hopf bifurcation provides a well established approach to generate periodic<br />

solutions. In recent studies this approach has been extended to non-smooth systems. In this lecture we<br />

will present an overview of recent results concerning the bifurcation of periodic solutions. In particular<br />

we will show how the dynamics of high-dimensional systems can be reduced to the investigation of low<br />

dimensional systems. For that purpose the concept of center manifolds is generalized to invariant "conelike”<br />

objects which may involve grazing/sliding bifurcation.<br />

Literatur<br />

K Küpper, T. (2008). Invariant cones for non-smooth systems, Mathematics and Computers in Simulation,<br />

79 1396-1409.<br />

KH Küpper, T., Hosham, H. A. (2011). Reduction to invariant cones for non-smooth systems, special Issue<br />

of Mathematics and Computers in Simulation, 81 980-995.<br />

HKW Weiss, D., Küpper, T., Hosham, H. A. (2011). Invariant manifolds for nonsmooth systems, Physica<br />

D: Nonlinear Phenomena, to appear.<br />

Hosham, H. A. (2011). Conelike invariant manifolds for non-smooth systems, in preparation.<br />

Filippov, A. F. (1988). Differential equations with discontinuous right-hand sides, Mathematics and Its<br />

Applications, Kluwer Academic, Dordrecht, Netherlands.<br />

175

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!