22.12.2012 Views

3. FOOD ChEMISTRy & bIOTEChNOLOGy 3.1. Lectures

3. FOOD ChEMISTRy & bIOTEChNOLOGy 3.1. Lectures

3. FOOD ChEMISTRy & bIOTEChNOLOGy 3.1. Lectures

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chem. Listy, 102, s265–s1311 (2008) Food Chemistry & Biotechnology<br />

pharmacological activity. This evidence was clearly described<br />

in lipid theory advanced by Meyer and Overton. According<br />

to this theory, log P is a measure of hydrophobicity which is<br />

important for the penetration and distribution of the drug, but<br />

also for the interaction of drug with receptors. Therefore, it<br />

can be suggested that lipophilic properties have to be checked<br />

for designing of potent antifungal agents as they are deciding<br />

factors for its activity.<br />

Fig. 2. Plot of residual values against the experimentally observed<br />

log 1/c MIC values<br />

Conclusions<br />

QSAR analysis was performed to estimate the quantitative<br />

effects of the lipophilicity parameter, logP, of the different<br />

substituted 2-amino and 2-methylbenzimidazole derivatives<br />

on their antifungal activity against Saccharomyces<br />

cerevisiae. log P values were calculated for each molecule,<br />

and high-quality mathematical model relating the inhibitory<br />

activity, log 1/c MIC , and log P was defined . . For the estimation<br />

of the predictive ability of this model, the cross-validation<br />

statistical technique was applied. Comparison of the linear,<br />

quadratic and cubic relationships showed that the cubic equation<br />

was the most appropriate for prediction of antifungal<br />

activity of the investigated class of molecules. It is concluded<br />

that strong influence of the partition coefficient, log P, is<br />

important for the inhibitory activity and this parameter is usually<br />

related to pharmacological activity. The obtained mathematical<br />

model was used to predict antifungal activity of the<br />

benzimidazoles investigated and close agreement between<br />

experimental and predicted values was obtained. It indicates<br />

that this model can be successfully applied to predict the antifungal<br />

activity of these class of molecules.<br />

This work has been supported by Ministry of Science<br />

and Environment Protection of the Republic of Serbia as are<br />

the part of the project No. 142028<br />

REFEREnCES<br />

1. Goker H., Alp M., Yildiz S.: Molecules 10, 1377 (2000).<br />

2. nguyen P. T. M., Baldeck J. D., Olsson J., Marquis R. E.:<br />

Oral Microbiol. Immunol. 20, 93 (2005).<br />

s756<br />

<strong>3.</strong> Podunavac-Kuzmanović S. O., Leovac V. M., Perišić-Janjić<br />

n. U., Rogan J., Balaž J.: J. Serb. Chem. Soc. 64, 381<br />

(1999).<br />

4. Podunavac-Kuzmanović S. O., Cvetković D.: J. Serb.<br />

Chem. Soc. 75, 381 (2007).<br />

5. Ayhan-Kilcigil G., Altanlar n.: Turk. J. Chem. 30, 223<br />

(2006).<br />

6. Boiani M., Gonzalez M.: J. Med. Chem. 5, 409 (2005).<br />

7. Garuti L., Roberti M., Cermelli C.: Bioorg. Medicinal<br />

Chem. Letter 9, 2525 (1999).<br />

8. Kazimierczuk Z., Upcroft J. A., Upcroft P., Gorska A., Starosciak<br />

B., Laudy A.: Acta Biochim. Polon. 49, 185 (2002).<br />

9. Akbay A., Oren I., Temiz-Arpaci O., Aki-Sener E., Yalcin I.:<br />

Arzneim.-Forcsh./Drug Res. 53, 266 (2003).<br />

10. Bevan D.: QSAR and Drug Design. network Science,<br />

http://www.netsci.org/Science/Compchem/feature12.html.<br />

11. QSAR, The Australian Computational Chemistry via the<br />

InternetProject,www.chem.swin.edu.au/modukes/mod4/<br />

index.html.<br />

12. Hansch C.: J. Med. Chem. 19, 1 (1976).<br />

1<strong>3.</strong> Vasanthanathan P., Lakshmi M., Babu M. A., Gupta A. K.,<br />

Kaskhedikar S. G.: Chem. Pharm. Bull. 54, 583 (2006).<br />

14. Melagraki G., Afantitis A., Sarimveis H., Igglessi-Markopoulou<br />

O., Supuran C. T.: Bioorg. Med. Chem. 14, 1108<br />

(2006).<br />

15. Podunavac-Kuzmanović S. O., Markov S. L., Barna D. J.:<br />

J. Theor. Comp. Chem. 6, 687 (2007).<br />

16. Podunavac-Kuzmanović, S. O., Barna, D. J., Cvetković<br />

D. M.: Acta Periodica Technol. 38, 139 (2007).<br />

17. Leo A., Hansch C., Elkins D.: Chem. Rev. 71, 525 (1971).<br />

18. nasal A., Siluk D., Kaliszan R.: Curr. Med. Chem. 10, 381<br />

(2003).<br />

19. Tiperciuc B, Sarbu C.: J. Liq. Chrom. Rel. Technol. 29,<br />

2257 (2006).<br />

20. Perišić-Janjić n. U., Podunavac-Kuzmanović S. O.: J.<br />

Planar Chromatogr. 21, 135 (2008).<br />

21. Perišić-Janjić n. U., Podunavac-Kuzmanović S. O., Balaž,<br />

J. S., Vlaović Dj.: J. Planar Chromatogr. 13, 123 (2000).<br />

22. Slawik T., Paw B.: J.Liq. Chromatogr. 27, 1043 (2004).<br />

2<strong>3.</strong> Vlaović Đ., Čanadanović-Brunet J., Balaž J., Juranić I., Đoković<br />

D., Mackenzie K.: Biosci. Biotech. Biochem. 56, 199<br />

(1992).<br />

24. national Committee for Clinical Laboratory Standards,<br />

nCCLS Approval Standard Document M2-A7. Vilanova,<br />

Pa, U.S.A. 2000.<br />

25. national Committee for Clinical Laboratory Standards,<br />

NCCLS Approval Standard Document M7-A5. Vilanova,<br />

Pa, U.S.A. 2000.<br />

26. CS. Chem. Office, Version 7.0, Cambridge Soft Corporation,<br />

100 Cambridge Park Drive, Cambridge, MA 02140-<br />

2317, U.S.A. 2001.<br />

27. www.ncss.com.<br />

28. Lien E.J.: Side Effects and Drug Design. Marcel Dekker,<br />

new York 1987.<br />

29. Jalali-Heravi M., Kyani A.: J. Chem. Inf. Comput. Sci. 44,<br />

1328 (2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!