06.09.2021 Views

Linear Algebra, 2020a

Linear Algebra, 2020a

Linear Algebra, 2020a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

130 Chapter Two. Vector Spaces<br />

2.2 Example Here is a basis for R 3 and a vector given as a linear combination of<br />

members of that basis.<br />

⎛<br />

⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

0<br />

⎞ ⎛<br />

⎟ ⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

0<br />

⎞<br />

⎟<br />

B = 〈 ⎝0⎠ , ⎝1⎠ , ⎝0⎠〉<br />

⎝2⎠ =(−1) · ⎝0⎠ + 2 ⎝1⎠ + 0 · ⎝0⎠<br />

0 0 2 0<br />

0 0 2<br />

Two of the basis vectors have non-zero coefficients. Pick one, for instance the<br />

first. Replace it with the vector that we’ve expressed as the combination<br />

⎛<br />

⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

1<br />

⎞ ⎛<br />

⎟ ⎜<br />

0<br />

⎞<br />

⎟<br />

ˆB = 〈 ⎝2⎠ , ⎝1⎠ , ⎝0⎠〉<br />

0 0 2<br />

and the result is another basis for R 3 .<br />

2.3 Lemma (Exchange Lemma) Assume that B = 〈⃗β 1 ,...,⃗β n 〉 is a basis for a<br />

vector space, and that for the vector ⃗v the relationship ⃗v = c 1<br />

⃗β 1 + c 2<br />

⃗β 2 + ···+<br />

c n<br />

⃗β n has c i ≠ 0. Then exchanging ⃗β i for ⃗v yields another basis for the space.<br />

Proof Call the outcome of the exchange ˆB = 〈⃗β 1 ,...,⃗β i−1 ,⃗v, ⃗β i+1 ,...,⃗β n 〉.<br />

We first show that ˆB is linearly independent. Any relationship d 1<br />

⃗β 1 + ···+<br />

d i ⃗v + ···+ d n<br />

⃗β n = ⃗0 among the members of ˆB, after substitution for ⃗v,<br />

d 1<br />

⃗β 1 + ···+ d i · (c 1<br />

⃗β 1 + ···+ c i<br />

⃗β i + ···+ c n<br />

⃗β n )+···+ d n<br />

⃗β n = ⃗0<br />

(∗)<br />

gives a linear relationship among the members of B. The basis B is linearly<br />

independent so the coefficient d i c i of ⃗β i is zero. Because we assumed that c i is<br />

nonzero, d i = 0. Using this in equation (∗) gives that all of the other d’s are<br />

also zero. Therefore ˆB is linearly independent.<br />

We finish by showing that ˆB has the same span as B. Half of this argument,<br />

that [ˆB] ⊆ [B], is easy; we can write any member d 1<br />

⃗β 1 +···+d i ⃗v+···+d n<br />

⃗β n of [ˆB]<br />

as d 1<br />

⃗β 1 +···+d i ·(c 1<br />

⃗β 1 +···+c n<br />

⃗β n )+···+d n<br />

⃗β n , which is a linear combination<br />

of linear combinations of members of B, and hence is in [B]. For the [B] ⊆ [ˆB]<br />

half of the argument, recall that if ⃗v = c 1<br />

⃗β 1 +···+c n<br />

⃗β n with c i ≠ 0 then we can<br />

rearrange the equation to ⃗β i =(−c 1 /c i )⃗β 1 + ···+(1/c i )⃗v + ···+(−c n /c i )⃗β n .<br />

Now, consider any member d 1<br />

⃗β 1 + ···+ d i<br />

⃗β i + ···+ d n<br />

⃗β n of [B], substitute for<br />

⃗β i its expression as a linear combination of the members of ˆB, and recognize,<br />

as in the first half of this argument, that the result is a linear combination of<br />

linear combinations of members of ˆB, and hence is in [ˆB].<br />

QED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!