06.09.2021 Views

Linear Algebra, 2020a

Linear Algebra, 2020a

Linear Algebra, 2020a

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

136 Chapter Two. Vector Spaces<br />

III.3<br />

Vector Spaces and <strong>Linear</strong> Systems<br />

We will now reconsider linear systems and Gauss’s Method, aided by the tools<br />

and terms of this chapter. We will make three points.<br />

For the first, recall the insight from the Chapter One that Gauss’s Method<br />

works by taking linear combinations of rows — if two matrices are related by<br />

row operations A −→ ··· −→ B then each row of B is a linear combination of<br />

the rows of A. Therefore, the right setting in which to study row operations in<br />

general, and Gauss’s Method in particular, is the following vector space.<br />

3.1 Definition The row space of a matrix is the span of the set of its rows. The<br />

row rank is the dimension of this space, the number of linearly independent<br />

rows.<br />

3.2 Example If<br />

( )<br />

2 3<br />

A =<br />

4 6<br />

then Rowspace(A) is this subspace of the space of two-component row vectors.<br />

{c 1 · (2 3)+c 2 · (4 6) | c 1 ,c 2 ∈ R}<br />

The second row vector is linearly dependent on the first and so we can simplify<br />

the above description to {c · (2 3) | c ∈ R}.<br />

3.3 Lemma If two matrices A and B are related by a row operation<br />

A<br />

ρ i↔ρ j<br />

kρ i<br />

kρ i +ρ j<br />

−→ B or A −→ B or A −→<br />

B<br />

(for i ≠ j and k ≠ 0) then their row spaces are equal. Hence, row-equivalent<br />

matrices have the same row space and therefore the same row rank.<br />

Proof Corollary One.III.2.4 shows that when A −→ B then each row of B is a<br />

linear combination of the rows of A. That is, in the above terminology, each row<br />

of B is an element of the row space of A. Then Rowspace(B) ⊆ Rowspace(A)<br />

follows because a member of the set Rowspace(B) is a linear combination of the<br />

rows of B, so it is a combination of combinations of the rows of A, and by the<br />

<strong>Linear</strong> Combination Lemma is also a member of Rowspace(A).<br />

For the other set containment, recall Lemma One.III.1.5, that row operations<br />

are reversible so A −→ B if and only if B −→ A. Then Rowspace(A) ⊆<br />

Rowspace(B) follows as in the previous paragraph.<br />

QED<br />

Of course, Gauss’s Method performs the row operations systematically, with<br />

the goal of echelon form.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!