06.09.2021 Views

Linear Algebra, 2020a

Linear Algebra, 2020a

Linear Algebra, 2020a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section III. Basis and Dimension 135<br />

2.36 A basis for a space consists of elements of that space. So we are naturally led to<br />

how the property ‘is a basis’ interacts with operations ⊆ and ∩ and ∪. (Of course,<br />

a basis is actually a sequence that it is ordered, but there is a natural extension of<br />

these operations.)<br />

(a) Consider first how bases might be related by ⊆. Assume that U, W are<br />

subspaces of some vector space and that U ⊆ W. Can there exist bases B U for U<br />

and B W for W such that B U ⊆ B W ? Must such bases exist?<br />

For any basis B U for U, must there be a basis B W for W such that B U ⊆ B W ?<br />

For any basis B W for W, must there be a basis B U for U such that B U ⊆ B W ?<br />

For any bases B U ,B W for U and W, must B U be a subset of B W ?<br />

(b) Is the ∩ of bases a basis? For what space?<br />

(c) Is the ∪ of bases a basis? For what space?<br />

(d) What about the complement operation?<br />

(Hint. Test any conjectures against some subspaces of R 3 .)<br />

̌ 2.37 Consider how ‘dimension’ interacts with ‘subset’. Assume U and W are both<br />

subspaces of some vector space, and that U ⊆ W.<br />

(a) Prove that dim(U) dim(W).<br />

(b) Prove that equality of dimension holds if and only if U = W.<br />

(c) Show that the prior item does not hold if they are infinite-dimensional.<br />

2.38 Here is an alternative proof of this section’s main result, Theorem 2.4. First is<br />

an example, then a lemma, then the theorem.<br />

(a) Express this vector from R 3 a as a linear combination of members of the basis.<br />

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞<br />

1 1 0<br />

1<br />

B = 〈 ⎝ ⎠ , ⎝ ⎠ , ⎝ ⎠〉 ⃗v = ⎝ ⎠<br />

0<br />

0<br />

1<br />

0<br />

(b) In that combination pick a basis vector with a non-zero coefficient. Alter B<br />

by exchanging ⃗v for that basis vector, to get a new sequence ˆB. Check that ˆB is<br />

also a basis for R 3 .<br />

(c) (Exchange Lemma) Assume that B = 〈⃗β 1 ,...,⃗β n 〉 is a basis for a vector space,<br />

and that for the vector ⃗v the relationship ⃗v = c 1<br />

⃗β 1 + c 2<br />

⃗β 2 + ···+ c n<br />

⃗β n has c i ≠ 0.<br />

Prove that exchanging ⃗v for ⃗β i yields another basis for the space.<br />

(d) Use that, with induction, to prove Theorem 2.4.<br />

? 2.39 [Sheffer] A library has n books and n + 1 subscribers. Each subscriber read at<br />

least one book from the library. Prove that there must exist two disjoint sets of<br />

subscribers who read exactly the same books (that is, the union of the books read<br />

by the subscribers in each set is the same).<br />

? 2.40 [Wohascum no. 47] For any vector ⃗v in R n and any permutation σ of the<br />

numbers 1, 2, ..., n (that is, σ is a rearrangement of those numbers into a new<br />

order), define σ(⃗v) to be the vector whose components are v σ(1) , v σ(2) , ..., and<br />

v σ(n) (where σ(1) is the first number in the rearrangement, etc.). Now fix ⃗v and let<br />

V be the span of {σ(⃗v) | σ permutes 1, ..., n}. What are the possibilities for the<br />

dimension of V?<br />

0<br />

2<br />

2<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!