06.09.2021 Views

Linear Algebra, 2020a

Linear Algebra, 2020a

Linear Algebra, 2020a

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section IV. Jordan Form 453<br />

The diagonalizable case is where t has n distinct eigenvalues λ 1 , ..., λ n ,<br />

that is, where the number of eigenvalues equals the dimension of the space. In<br />

this case there is a basis 〈⃗β 1 ,...,⃗β n 〉 where ⃗β i is an eigenvector associated with<br />

the eigenvalue λ i . The example below has n = 3 and the three eigenvalues are<br />

λ 1 = 1, λ 2 = 3, and λ 3 =−1. It shows the canonical representative matrix and<br />

the associated basis.<br />

⎛<br />

⎜<br />

1 0 0<br />

⎞<br />

⎟<br />

T 1 = ⎝0 3 0 ⎠<br />

0 0 −1<br />

⃗β 1<br />

t−1<br />

↦−→ ⃗0<br />

⃗β 2<br />

t−3<br />

↦−→ ⃗0<br />

⃗β 3<br />

t+1<br />

↦−→ ⃗0<br />

One diagonalization example is Five.II.3.21.<br />

The case where t has a single eigenvalue leverages the results on nilpotency<br />

to get a basis of associated eigenvectors that form disjoint strings. This example<br />

has n = 10, a single eigenvalue λ = 2, and five Jordan blocks.<br />

⎛<br />

⎞<br />

2 0 0 0 0 0 0 0 0 0<br />

1 2 0 0 0 0 0 0 0 0<br />

0 1 2 0 0 0 0 0 0 0<br />

0 0 0 2 0 0 0 0 0 0<br />

T 2 =<br />

0 0 0 1 2 0 0 0 0 0<br />

0 0 0 0 1 2 0 0 0 0<br />

0 0 0 0 0 0 2 0 0 0<br />

0 0 0 0 0 0 1 2 0 0<br />

⎜<br />

⎟<br />

⎝0 0 0 0 0 0 0 0 2 0⎠<br />

0 0 0 0 0 0 0 0 0 2<br />

⃗β 1<br />

t−2<br />

↦−→ ⃗β 2<br />

t−2<br />

↦−→ ⃗β 3<br />

t−2<br />

↦−→ ⃗0<br />

⃗β 4<br />

t−2<br />

↦−→ ⃗β 5<br />

t−2<br />

↦−→ ⃗β 6<br />

t−2<br />

↦−→ ⃗0<br />

⃗β 7<br />

t−2<br />

↦−→ ⃗β 8<br />

t−2<br />

↦−→ ⃗0<br />

⃗β 9<br />

t−2<br />

↦−→ ⃗0<br />

⃗β 10<br />

t−2<br />

↦−→ ⃗0<br />

We saw a full example as Example 2.5.<br />

Theorem 2.8 below extends these two to any transformation t: C n → C n .<br />

The canonical form consists of Jordan blocks containing the eigenvalues. This<br />

illustrates such a matrix for n = 6 with eigenvalues 3, 2, and −1 (examples with<br />

full compuations are after the theorem).<br />

⎛<br />

⎞<br />

3 0 0 0 0 0<br />

1 3 0 0 0 0<br />

0 0 3 0 0 0<br />

T 3 =<br />

0 0 0 2 0 0<br />

⎜<br />

⎟<br />

⎝0 0 0 1 2 0 ⎠<br />

0 0 0 0 0 −1<br />

⃗β 1<br />

t−3<br />

↦−→ ⃗β 2<br />

t−3<br />

↦−→ ⃗0<br />

⃗β 3<br />

t−3<br />

↦−→ ⃗0<br />

⃗β 4<br />

t−2<br />

↦−→ ⃗β 5<br />

t−2<br />

↦−→ ⃗0<br />

⃗β 6<br />

t+1<br />

↦−→ ⃗0<br />

It has four blocks, two associated with the eigenvalue 3, and one each with 2<br />

and −1.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!